MLP

Struct MLP 

Source
pub struct MLP { /* private fields */ }

Implementations§

Source§

impl MLP

Source

pub fn new(input_count: usize, output_counts: Vec<usize>) -> MLP

Examples found in repository?
examples/gradient_descent.rs (line 6)
5fn main() {
6    let mlp = MLP::new(3, vec![4, 4, 1]);
7
8    let xs = vec![
9        vec![2.0, 3.0, -1.0],
10        vec![3.0, -1.0, 0.5],
11        vec![0.5, 1.0, 1.0],
12        vec![1.0, 1.0, -1.0],
13    ];
14
15    let ys = vec![1.0, -1.0, -1.0, 1.0];
16
17    for _ in 0..100 {
18        // Forward pass
19        let ypred: Vec<Value> = xs
20            .iter()
21            .map(|x| mlp.forward(x.iter().map(|x| Value::from(*x)).collect())[0].clone())
22            .collect();
23        let ypred_floats: Vec<f64> = ypred.iter().map(|v| v.data()).collect();
24
25        // Loss function
26        let ygt = ys.iter().map(|y| Value::from(*y));
27        let loss: Value = ypred
28            .into_iter()
29            .zip(ygt)
30            .map(|(yp, yg)| (yp - yg).pow(&Value::from(2.0)))
31            .sum();
32
33        println!("Loss: {} Predictions: {:?}", loss.data(), ypred_floats);
34
35        // Backward pass
36        mlp.parameters().iter().for_each(|p| p.clear_gradient());
37        loss.backward();
38
39        // Adjustment
40        mlp.parameters().iter().for_each(|p| p.adjust(-0.05));
41    }
42}
Source

pub fn forward(&self, xs: Vec<Value>) -> Vec<Value>

Examples found in repository?
examples/gradient_descent.rs (line 21)
5fn main() {
6    let mlp = MLP::new(3, vec![4, 4, 1]);
7
8    let xs = vec![
9        vec![2.0, 3.0, -1.0],
10        vec![3.0, -1.0, 0.5],
11        vec![0.5, 1.0, 1.0],
12        vec![1.0, 1.0, -1.0],
13    ];
14
15    let ys = vec![1.0, -1.0, -1.0, 1.0];
16
17    for _ in 0..100 {
18        // Forward pass
19        let ypred: Vec<Value> = xs
20            .iter()
21            .map(|x| mlp.forward(x.iter().map(|x| Value::from(*x)).collect())[0].clone())
22            .collect();
23        let ypred_floats: Vec<f64> = ypred.iter().map(|v| v.data()).collect();
24
25        // Loss function
26        let ygt = ys.iter().map(|y| Value::from(*y));
27        let loss: Value = ypred
28            .into_iter()
29            .zip(ygt)
30            .map(|(yp, yg)| (yp - yg).pow(&Value::from(2.0)))
31            .sum();
32
33        println!("Loss: {} Predictions: {:?}", loss.data(), ypred_floats);
34
35        // Backward pass
36        mlp.parameters().iter().for_each(|p| p.clear_gradient());
37        loss.backward();
38
39        // Adjustment
40        mlp.parameters().iter().for_each(|p| p.adjust(-0.05));
41    }
42}
Source

pub fn parameters(&self) -> Vec<Value>

Examples found in repository?
examples/gradient_descent.rs (line 36)
5fn main() {
6    let mlp = MLP::new(3, vec![4, 4, 1]);
7
8    let xs = vec![
9        vec![2.0, 3.0, -1.0],
10        vec![3.0, -1.0, 0.5],
11        vec![0.5, 1.0, 1.0],
12        vec![1.0, 1.0, -1.0],
13    ];
14
15    let ys = vec![1.0, -1.0, -1.0, 1.0];
16
17    for _ in 0..100 {
18        // Forward pass
19        let ypred: Vec<Value> = xs
20            .iter()
21            .map(|x| mlp.forward(x.iter().map(|x| Value::from(*x)).collect())[0].clone())
22            .collect();
23        let ypred_floats: Vec<f64> = ypred.iter().map(|v| v.data()).collect();
24
25        // Loss function
26        let ygt = ys.iter().map(|y| Value::from(*y));
27        let loss: Value = ypred
28            .into_iter()
29            .zip(ygt)
30            .map(|(yp, yg)| (yp - yg).pow(&Value::from(2.0)))
31            .sum();
32
33        println!("Loss: {} Predictions: {:?}", loss.data(), ypred_floats);
34
35        // Backward pass
36        mlp.parameters().iter().for_each(|p| p.clear_gradient());
37        loss.backward();
38
39        // Adjustment
40        mlp.parameters().iter().for_each(|p| p.adjust(-0.05));
41    }
42}

Trait Implementations§

Source§

impl Clone for MLP

Source§

fn clone(&self) -> MLP

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more

Auto Trait Implementations§

§

impl Freeze for MLP

§

impl !RefUnwindSafe for MLP

§

impl !Send for MLP

§

impl !Sync for MLP

§

impl Unpin for MLP

§

impl !UnwindSafe for MLP

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V