pub struct ConservativeFields;Expand description
Conservative field analysis
Implementations§
Source§impl ConservativeFields
impl ConservativeFields
Sourcepub fn is_conservative(
vector_field: &[Expression],
variables: Vec<Symbol>,
) -> bool
pub fn is_conservative( vector_field: &[Expression], variables: Vec<Symbol>, ) -> bool
Check if a vector field is conservative (curl = 0)
§Examples
use mathhook_core::calculus::derivatives::ConservativeFields;
use mathhook_core::{Expression, symbol};
let x = symbol!(x);
let y = symbol!(y);
let conservative_field = vec![
Expression::symbol(x.clone()),
Expression::symbol(y.clone())
];
let is_conservative = ConservativeFields::is_conservative(&conservative_field, vec![x, y]);Sourcepub fn find_potential(
vector_field: &[Expression],
variables: &[Symbol],
) -> Option<Expression>
pub fn find_potential( vector_field: &[Expression], variables: &[Symbol], ) -> Option<Expression>
Find potential function φ such that F = ∇φ
§Examples
use mathhook_core::calculus::derivatives::ConservativeFields;
use mathhook_core::{Expression};
use mathhook_core::symbol;
let x = symbol!(x);
let y = symbol!(y);
let conservative_field = vec![
Expression::mul(vec![Expression::integer(2), Expression::symbol(x.clone())]),
Expression::mul(vec![Expression::integer(2), Expression::symbol(y.clone())])
];
let potential = ConservativeFields::find_potential(&conservative_field, &[x, y]);Sourcepub fn is_irrotational(
vector_field: &[Expression],
variables: Vec<Symbol>,
) -> bool
pub fn is_irrotational( vector_field: &[Expression], variables: Vec<Symbol>, ) -> bool
Check if field is irrotational (curl = 0)
§Examples
use mathhook_core::calculus::derivatives::PartialUtils;
use mathhook_core::calculus::derivatives::VectorFieldOperations;
use mathhook_core::calculus::derivatives::ConservativeFields;
use mathhook_core::{Expression};
use mathhook_core::symbol;
let x = symbol!(x);
let y = symbol!(y);
let z = symbol!(z);
let irrotational_field = vec![
Expression::symbol(x.clone()),
Expression::symbol(y.clone()),
Expression::symbol(z.clone())
];
let is_irrotational = ConservativeFields::is_irrotational(&irrotational_field, vec![x, y, z]);Sourcepub fn is_solenoidal(
vector_field: &[Expression],
variables: Vec<Symbol>,
) -> bool
pub fn is_solenoidal( vector_field: &[Expression], variables: Vec<Symbol>, ) -> bool
Check if field is solenoidal (divergence = 0)
§Examples
use mathhook_core::calculus::derivatives::ConservativeFields;
use mathhook_core::{Expression};
use mathhook_core::symbol;
let x = symbol!(x);
let y = symbol!(y);
let solenoidal_field = vec![
Expression::symbol(y.clone()),
Expression::mul(vec![Expression::integer(-1), Expression::symbol(x.clone())])
];
let is_solenoidal = ConservativeFields::is_solenoidal(&solenoidal_field, vec![x, y]);Auto Trait Implementations§
impl Freeze for ConservativeFields
impl RefUnwindSafe for ConservativeFields
impl Send for ConservativeFields
impl Sync for ConservativeFields
impl Unpin for ConservativeFields
impl UnwindSafe for ConservativeFields
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more