pub struct LimitEducation;Expand description
Educational explanations for limit operations
Implementations§
Source§impl LimitEducation
impl LimitEducation
Sourcepub fn direct_substitution_explanation(
expr: &Expression,
variable: &Symbol,
point: &Expression,
result: &Expression,
) -> EnhancedStepExplanation
pub fn direct_substitution_explanation( expr: &Expression, variable: &Symbol, point: &Expression, result: &Expression, ) -> EnhancedStepExplanation
Generate educational explanation for direct substitution limit
Explains the process of evaluating a limit by directly substituting the limit point into the expression.
§Arguments
expr- The expression to take the limit ofvariable- The variable approaching the limit pointpoint- The value the variable approachesresult- The computed limit result
§Returns
Complete step-by-step explanation with at least 3 steps
Sourcepub fn indeterminate_form_explanation(
expr: &Expression,
variable: &Symbol,
point: &Expression,
form_type: &str,
) -> EnhancedStepExplanation
pub fn indeterminate_form_explanation( expr: &Expression, variable: &Symbol, point: &Expression, form_type: &str, ) -> EnhancedStepExplanation
Generate educational explanation for indeterminate form detection
Explains how to identify indeterminate forms (0/0, infinity/infinity, etc.) and the strategies needed to resolve them.
§Arguments
expr- The expression producing an indeterminate formvariable- The variable in the limitpoint- The limit pointform_type- The type of indeterminate form (e.g., “0/0”)
§Returns
Complete step-by-step explanation with at least 4 steps
Sourcepub fn lhopital_rule_explanation(
numerator: &Expression,
denominator: &Expression,
variable: &Symbol,
point: &Expression,
) -> EnhancedStepExplanation
pub fn lhopital_rule_explanation( numerator: &Expression, denominator: &Expression, variable: &Symbol, point: &Expression, ) -> EnhancedStepExplanation
Generate educational explanation for L’Hopital’s rule application
Explains the complete process of applying L’Hopital’s rule to resolve indeterminate forms by differentiating numerator and denominator.
§Arguments
numerator- The numerator expressiondenominator- The denominator expressionvariable- The variable in the limitpoint- The limit point
§Returns
Complete step-by-step explanation with at least 6 steps
Sourcepub fn limit_laws_explanation(
expr: &Expression,
variable: &Symbol,
point: &Expression,
) -> EnhancedStepExplanation
pub fn limit_laws_explanation( expr: &Expression, variable: &Symbol, point: &Expression, ) -> EnhancedStepExplanation
Generate educational explanation for limit laws application
Explains how limit laws (sum, product, quotient, constant multiple) can be used to break down complex limits into simpler parts.
§Arguments
expr- The expression whose limit to findvariable- The variable in the limitpoint- The limit point
§Returns
Complete step-by-step explanation with at least 4 steps
Sourcepub fn limit_at_infinity_explanation(
expr: &Expression,
variable: &Symbol,
) -> EnhancedStepExplanation
pub fn limit_at_infinity_explanation( expr: &Expression, variable: &Symbol, ) -> EnhancedStepExplanation
Generate educational explanation for limits at infinity
Explains the technique of dividing by the highest power to evaluate limits as the variable approaches infinity.
§Arguments
expr- The expression whose limit to findvariable- The variable approaching infinity
§Returns
Complete step-by-step explanation with at least 4 steps
Auto Trait Implementations§
impl Freeze for LimitEducation
impl RefUnwindSafe for LimitEducation
impl Send for LimitEducation
impl Sync for LimitEducation
impl Unpin for LimitEducation
impl UnwindSafe for LimitEducation
Blanket Implementations§
§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more