pub struct UDU<T, D> where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>, {
pub u: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
pub d: Matrix<T, D, Const<1_usize>, <DefaultAllocator as Allocator<T, D, Const<1_usize>>>::Buffer>,
}
Expand description
UDU factorization.
Fields
u: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
The upper triangular matrix resulting from the factorization
d: Matrix<T, D, Const<1_usize>, <DefaultAllocator as Allocator<T, D, Const<1_usize>>>::Buffer>
The diagonal matrix resulting from the factorization
Implementations
sourceimpl<T, D> UDU<T, D> where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> UDU<T, D> where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
sourcepub fn new(
p: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> Option<UDU<T, D>>
pub fn new(
p: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> Option<UDU<T, D>>
Computes the UDU^T factorization.
The input matrix p
is assumed to be symmetric and this decomposition will only read
the upper-triangular part of p
.
Ref.: “Optimal control and estimation-Dover Publications”, Robert F. Stengel, (1994) page 360
Trait Implementations
sourceimpl<T, D> Clone for UDU<T, D> where
T: Clone + RealField,
D: Clone + Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Clone for UDU<T, D> where
T: Clone + RealField,
D: Clone + Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
sourceimpl<T, D> Debug for UDU<T, D> where
T: Debug + RealField,
D: Debug + Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Debug for UDU<T, D> where
T: Debug + RealField,
D: Debug + Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
impl<T, D> Copy for UDU<T, D> where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1_usize>>,
DefaultAllocator: Allocator<T, D, D>,
Matrix<T, D, Const<1_usize>, <DefaultAllocator as Allocator<T, D, Const<1_usize>>>::Buffer>: Copy,
Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy,
Auto Trait Implementations
impl<T, D> !RefUnwindSafe for UDU<T, D>
impl<T, D> !Send for UDU<T, D>
impl<T, D> !Sync for UDU<T, D>
impl<T, D> !Unpin for UDU<T, D>
impl<T, D> !UnwindSafe for UDU<T, D>
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self
from the equivalent element of its
superset. Read more
fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if self
is actually part of its subset T
(and can be converted to it).
fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset
but without any property checks. Always succeeds.
fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts self
to the equivalent element of its superset.