pub struct Basis3<S> { /* private fields */ }Expand description
A three-dimensional rotation matrix.
The matrix is guaranteed to be orthogonal, so some operations, specifically
inversion, can be implemented more efficiently than the implementations for
math::Matrix3. To ensure orthogonality is maintained, the operations have
been restricted to a subset of those implemented on Matrix3.
Implementations§
Source§impl<S> Basis3<S>where
S: BaseFloat,
impl<S> Basis3<S>where
S: BaseFloat,
Sourcepub fn from_quaternion(quaternion: &Quaternion<S>) -> Basis3<S>
pub fn from_quaternion(quaternion: &Quaternion<S>) -> Basis3<S>
Create a new rotation matrix from a quaternion.
Trait Implementations§
Source§impl<S> AbsDiffEq for Basis3<S>where
S: BaseFloat,
impl<S> AbsDiffEq for Basis3<S>where
S: BaseFloat,
Source§fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
The default tolerance to use when testing values that are close together. Read more
Source§fn abs_diff_eq(
&self,
other: &Basis3<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
) -> bool
fn abs_diff_eq( &self, other: &Basis3<S>, epsilon: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
Source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq.Source§impl<S> From<Basis3<S>> for Quaternion<S>where
S: BaseFloat,
impl<S> From<Basis3<S>> for Quaternion<S>where
S: BaseFloat,
Source§fn from(b: Basis3<S>) -> Quaternion<S>
fn from(b: Basis3<S>) -> Quaternion<S>
Converts to this type from the input type.
Source§impl<S> From<Quaternion<S>> for Basis3<S>where
S: BaseFloat,
impl<S> From<Quaternion<S>> for Basis3<S>where
S: BaseFloat,
Source§fn from(quat: Quaternion<S>) -> Basis3<S>
fn from(quat: Quaternion<S>) -> Basis3<S>
Converts to this type from the input type.
Source§impl<S> RelativeEq for Basis3<S>where
S: BaseFloat,
impl<S> RelativeEq for Basis3<S>where
S: BaseFloat,
Source§fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
Source§fn relative_eq(
&self,
other: &Basis3<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
max_relative: <S as AbsDiffEq>::Epsilon,
) -> bool
fn relative_eq( &self, other: &Basis3<S>, epsilon: <S as AbsDiffEq>::Epsilon, max_relative: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
Source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
The inverse of
RelativeEq::relative_eq.Source§impl<S> Rotation for Basis3<S>where
S: BaseFloat,
impl<S> Rotation for Basis3<S>where
S: BaseFloat,
type Space = Point3<S>
Source§fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Basis3<S>
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Basis3<S>
Create a rotation to a given direction with an ‘up’ vector.
Source§fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Basis3<S>
fn between_vectors(a: Vector3<S>, b: Vector3<S>) -> Basis3<S>
Create a shortest rotation to transform vector ‘a’ into ‘b’.
Both given vectors are assumed to have unit length.
Source§fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S>
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S>
Rotate a vector using this rotation.
Source§fn invert(&self) -> Basis3<S>
fn invert(&self) -> Basis3<S>
Create a new rotation which “un-does” this rotation. That is,
r * r.invert() is the identity.Source§fn rotate_point(&self, point: Self::Space) -> Self::Space
fn rotate_point(&self, point: Self::Space) -> Self::Space
Rotate a point using this rotation, by converting it to its
representation as a vector.
Source§impl<S> Rotation3 for Basis3<S>where
S: BaseFloat,
impl<S> Rotation3 for Basis3<S>where
S: BaseFloat,
type Scalar = S
Source§fn from_axis_angle<A>(axis: Vector3<S>, angle: A) -> Basis3<S>
fn from_axis_angle<A>(axis: Vector3<S>, angle: A) -> Basis3<S>
Create a rotation using an angle around a given axis. Read more
Source§fn from_angle_x<A>(theta: A) -> Basis3<S>
fn from_angle_x<A>(theta: A) -> Basis3<S>
Create a rotation from an angle around the
x axis (pitch).Source§fn from_angle_y<A>(theta: A) -> Basis3<S>
fn from_angle_y<A>(theta: A) -> Basis3<S>
Create a rotation from an angle around the
y axis (yaw).Source§impl<S> UlpsEq for Basis3<S>where
S: BaseFloat,
impl<S> UlpsEq for Basis3<S>where
S: BaseFloat,
Source§fn default_max_ulps() -> u32
fn default_max_ulps() -> u32
The default ULPs to tolerate when testing values that are far-apart. Read more
impl<S> Copy for Basis3<S>where
S: Copy,
impl<S> StructuralPartialEq for Basis3<S>
Auto Trait Implementations§
impl<S> Freeze for Basis3<S>where
S: Freeze,
impl<S> RefUnwindSafe for Basis3<S>where
S: RefUnwindSafe,
impl<S> Send for Basis3<S>where
S: Send,
impl<S> Sync for Basis3<S>where
S: Sync,
impl<S> Unpin for Basis3<S>where
S: Unpin,
impl<S> UnwindSafe for Basis3<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.