#[repr(C)]pub struct Vector2<S> {
pub x: S,
pub y: S,
}
Expand description
A 2-dimensional vector.
This type is marked as #[repr(C)]
.
Fields§
§x: S
The x component of the vector.
y: S
The y component of the vector.
Implementations§
Source§impl<S> Vector2<S>
impl<S> Vector2<S>
Trait Implementations§
Source§impl<S> AbsDiffEq for Vector2<S>where
S: BaseFloat,
impl<S> AbsDiffEq for Vector2<S>where
S: BaseFloat,
Source§fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
The default tolerance to use when testing values that are close together. Read more
Source§fn abs_diff_eq(
&self,
other: &Vector2<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
) -> bool
fn abs_diff_eq( &self, other: &Vector2<S>, epsilon: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
Source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq
.Source§impl<S> AddAssign<Vector2<S>> for Point2<S>
impl<S> AddAssign<Vector2<S>> for Point2<S>
Source§fn add_assign(&mut self, vector: Vector2<S>)
fn add_assign(&mut self, vector: Vector2<S>)
Performs the
+=
operation. Read moreSource§impl<S> AddAssign for Vector2<S>
impl<S> AddAssign for Vector2<S>
Source§fn add_assign(&mut self, other: Vector2<S>)
fn add_assign(&mut self, other: Vector2<S>)
Performs the
+=
operation. Read moreSource§impl<S> Array for Vector2<S>where
S: Copy,
impl<S> Array for Vector2<S>where
S: Copy,
type Element = S
Source§fn from_value(scalar: S) -> Vector2<S>
fn from_value(scalar: S) -> Vector2<S>
Construct a vector from a single value, replicating it. Read more
Source§fn as_mut_ptr(&mut self) -> *mut Self::Element
fn as_mut_ptr(&mut self) -> *mut Self::Element
Get a mutable pointer to the first element of the array.
Source§fn swap_elements(&mut self, i: usize, j: usize)
fn swap_elements(&mut self, i: usize, j: usize)
Swap the elements at indices
i
and j
in-place.Source§impl<S> DivAssign<S> for Vector2<S>
impl<S> DivAssign<S> for Vector2<S>
Source§fn div_assign(&mut self, scalar: S)
fn div_assign(&mut self, scalar: S)
Performs the
/=
operation. Read moreSource§impl<S> ElementWise<S> for Vector2<S>where
S: BaseNum,
impl<S> ElementWise<S> for Vector2<S>where
S: BaseNum,
fn add_element_wise(self, rhs: S) -> Vector2<S>
fn sub_element_wise(self, rhs: S) -> Vector2<S>
fn mul_element_wise(self, rhs: S) -> Vector2<S>
fn div_element_wise(self, rhs: S) -> Vector2<S>
fn rem_element_wise(self, rhs: S) -> Vector2<S>
fn add_assign_element_wise(&mut self, rhs: S)
fn sub_assign_element_wise(&mut self, rhs: S)
fn mul_assign_element_wise(&mut self, rhs: S)
fn div_assign_element_wise(&mut self, rhs: S)
fn rem_assign_element_wise(&mut self, rhs: S)
Source§impl<S> ElementWise for Vector2<S>where
S: BaseNum,
impl<S> ElementWise for Vector2<S>where
S: BaseNum,
fn add_element_wise(self, rhs: Vector2<S>) -> Vector2<S>
fn sub_element_wise(self, rhs: Vector2<S>) -> Vector2<S>
fn mul_element_wise(self, rhs: Vector2<S>) -> Vector2<S>
fn div_element_wise(self, rhs: Vector2<S>) -> Vector2<S>
fn rem_element_wise(self, rhs: Vector2<S>) -> Vector2<S>
fn add_assign_element_wise(&mut self, rhs: Vector2<S>)
fn sub_assign_element_wise(&mut self, rhs: Vector2<S>)
fn mul_assign_element_wise(&mut self, rhs: Vector2<S>)
fn div_assign_element_wise(&mut self, rhs: Vector2<S>)
fn rem_assign_element_wise(&mut self, rhs: Vector2<S>)
Source§impl<S> InnerSpace for Vector2<S>where
S: BaseNum,
impl<S> InnerSpace for Vector2<S>where
S: BaseNum,
Source§fn angle(self, other: Vector2<S>) -> Rad<S>where
S: BaseFloat,
fn angle(self, other: Vector2<S>) -> Rad<S>where
S: BaseFloat,
Returns the angle between two vectors in radians.
Source§fn is_perpendicular(self, other: Self) -> bool
fn is_perpendicular(self, other: Self) -> bool
Returns
true
if the vector is perpendicular (at right angles) to the
other vector.Source§fn magnitude2(self) -> Self::Scalar
fn magnitude2(self) -> Self::Scalar
Returns the squared magnitude. Read more
Source§fn project_on(self, other: Self) -> Self
fn project_on(self, other: Self) -> Self
Returns the
vector projection
of the current inner space projected onto the supplied argument.
Source§impl<S> MetricSpace for Vector2<S>where
S: BaseNum,
impl<S> MetricSpace for Vector2<S>where
S: BaseNum,
Source§impl<S> MulAssign<S> for Vector2<S>
impl<S> MulAssign<S> for Vector2<S>
Source§fn mul_assign(&mut self, scalar: S)
fn mul_assign(&mut self, scalar: S)
Performs the
*=
operation. Read moreSource§impl<S> RelativeEq for Vector2<S>where
S: BaseFloat,
impl<S> RelativeEq for Vector2<S>where
S: BaseFloat,
Source§fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
Source§fn relative_eq(
&self,
other: &Vector2<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
max_relative: <S as AbsDiffEq>::Epsilon,
) -> bool
fn relative_eq( &self, other: &Vector2<S>, epsilon: <S as AbsDiffEq>::Epsilon, max_relative: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
Source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
The inverse of
RelativeEq::relative_eq
.Source§impl<S> RemAssign<S> for Vector2<S>
impl<S> RemAssign<S> for Vector2<S>
Source§fn rem_assign(&mut self, scalar: S)
fn rem_assign(&mut self, scalar: S)
Performs the
%=
operation. Read moreSource§impl<S> SubAssign<Vector2<S>> for Point2<S>
impl<S> SubAssign<Vector2<S>> for Point2<S>
Source§fn sub_assign(&mut self, vector: Vector2<S>)
fn sub_assign(&mut self, vector: Vector2<S>)
Performs the
-=
operation. Read moreSource§impl<S> SubAssign for Vector2<S>
impl<S> SubAssign for Vector2<S>
Source§fn sub_assign(&mut self, other: Vector2<S>)
fn sub_assign(&mut self, other: Vector2<S>)
Performs the
-=
operation. Read moreSource§impl<S> UlpsEq for Vector2<S>where
S: BaseFloat,
impl<S> UlpsEq for Vector2<S>where
S: BaseFloat,
Source§fn default_max_ulps() -> u32
fn default_max_ulps() -> u32
The default ULPs to tolerate when testing values that are far-apart. Read more
Source§impl<S> VectorSpace for Vector2<S>where
S: BaseNum,
impl<S> VectorSpace for Vector2<S>where
S: BaseNum,
Source§impl<Scalar> X2BasicInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
impl<Scalar> X2BasicInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
Source§impl<Scalar> X2CanonicalInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
impl<Scalar> X2CanonicalInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
Source§fn as_canonical(&self) -> &X2<Self::Scalar>
fn as_canonical(&self) -> &X2<Self::Scalar>
Canonical representation of the vector.
Source§fn as_canonical_mut(&mut self) -> &mut X2<Self::Scalar>
fn as_canonical_mut(&mut self) -> &mut X2<Self::Scalar>
Mutable canonical representation of the vector.
Source§fn assign<Src: X2BasicInterface<Scalar = Self::Scalar>>(&mut self, src: Src)
fn assign<Src: X2BasicInterface<Scalar = Self::Scalar>>(&mut self, src: Src)
Assign value.
Source§fn as_tuple_mut(&mut self) -> &mut (Self::Scalar, Self::Scalar)
fn as_tuple_mut(&mut self) -> &mut (Self::Scalar, Self::Scalar)
Interpret as mutable tuple.
Source§fn as_array_mut(&mut self) -> &mut [Self::Scalar; 2]
fn as_array_mut(&mut self) -> &mut [Self::Scalar; 2]
Interpret as mutable array.
Source§fn as_slice_mut(&mut self) -> &mut [Self::Scalar]
fn as_slice_mut(&mut self) -> &mut [Self::Scalar]
Interpret as mutable slice.
Source§impl<Scalar> X2NominalInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
impl<Scalar> X2NominalInterface for Vector2<Scalar>where
Scalar: ScalarInterface,
Source§fn clone_as_tuple(&self) -> (Self::Scalar, Self::Scalar)
fn clone_as_tuple(&self) -> (Self::Scalar, Self::Scalar)
Clone as tuple.
Source§fn clone_as_array(&self) -> [Self::Scalar; 2]
fn clone_as_array(&self) -> [Self::Scalar; 2]
Clone as array.
Source§fn clone_as_canonical(&self) -> X2<Self::Scalar>
fn clone_as_canonical(&self) -> X2<Self::Scalar>
Clone as canonical.
impl<S> Copy for Vector2<S>where
S: Copy,
impl<S> Eq for Vector2<S>where
S: Eq,
impl<S> StructuralPartialEq for Vector2<S>
Auto Trait Implementations§
impl<S> Freeze for Vector2<S>where
S: Freeze,
impl<S> RefUnwindSafe for Vector2<S>where
S: RefUnwindSafe,
impl<S> Send for Vector2<S>where
S: Send,
impl<S> Sync for Vector2<S>where
S: Sync,
impl<S> Unpin for Vector2<S>where
S: Unpin,
impl<S> UnwindSafe for Vector2<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<Scalar, Any> AsCgmathCanonicalInterface<Vector2<Scalar>> for Any
impl<Scalar, Any> AsCgmathCanonicalInterface<Vector2<Scalar>> for Any
Source§impl<Scalar, Any> AsCgmathNonCanonicalInterface<Vector2<Scalar>> for Any
impl<Scalar, Any> AsCgmathNonCanonicalInterface<Vector2<Scalar>> for Any
Source§fn clone_as_cgmath(&self) -> Vector2<Scalar>
fn clone_as_cgmath(&self) -> Vector2<Scalar>
Clone this data structure as cgmath analog to use its operations.
Source§impl<T, Any> AsForeignCanonicalInterface<T> for Any
impl<T, Any> AsForeignCanonicalInterface<T> for Any
Source§fn as_foreign(&self) -> &T
fn as_foreign(&self) -> &T
Interpret this data structure as nalgebra analog to use its operations.
Source§fn as_foreign_mut(&mut self) -> &mut T
fn as_foreign_mut(&mut self) -> &mut T
Interpret this data structure mutably as nalgebra analog to use its operations.
Source§impl<T, Any> AsForeignNonCanonicalInterface<T> for Any
impl<T, Any> AsForeignNonCanonicalInterface<T> for Any
Source§fn clone_as_foreign(&self) -> T
fn clone_as_foreign(&self) -> T
Clone this data structure as analog of a math lib of choice to use its operations.
Source§impl<Scalar, Any> AsNalgebraCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
impl<Scalar, Any> AsNalgebraCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
Source§fn as_nalgebra(
&self,
) -> &Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
fn as_nalgebra( &self, ) -> &Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
Interpret this data structure as nalgebra analog to use its operations.
Source§fn as_nalgebra_mut(
&mut self,
) -> &mut Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
fn as_nalgebra_mut( &mut self, ) -> &mut Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
Interpret this data structure mutably as nalgebra analog to use its operations.
Source§impl<Scalar, Any> AsNalgebraNonCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
impl<Scalar, Any> AsNalgebraNonCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
Source§fn clone_as_nalgebra(
&self,
) -> Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
fn clone_as_nalgebra( &self, ) -> Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>
Clone this data structure as nalgebra analog to use its operations.
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<Scalar, Original, Target> From2<Original> for Targetwhere
Scalar: ScalarInterface,
Original: X2NominalInterface<Scalar = Scalar>,
Target: X2BasicInterface<Scalar = Scalar>,
impl<Scalar, Original, Target> From2<Original> for Targetwhere
Scalar: ScalarInterface,
Original: X2NominalInterface<Scalar = Scalar>,
Target: X2BasicInterface<Scalar = Scalar>,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> LowerBounded for Twhere
T: Bounded,
impl<T> LowerBounded for Twhere
T: Bounded,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.