pub struct Conv2dConfig {
pub channels: [usize; 2],
pub kernel_size: [usize; 2],
pub stride: [usize; 2],
pub dilation: [usize; 2],
pub groups: usize,
pub padding: PaddingConfig2d,
pub bias: bool,
pub initializer: Initializer,
}Expand description
Configuration to create a 2D convolution layer, using the init function.
Fields§
§channels: [usize; 2]The number of channels.
kernel_size: [usize; 2]The size of the kernel.
stride: [usize; 2]The stride of the convolution.
dilation: [usize; 2]Spacing between kernel elements.
groups: usizeControls the connections between input and output channels.
padding: PaddingConfig2dThe padding configuration.
§Warning
Only symmetric padding is currently supported. As such, using Same padding with an even kernel
size is not supported as it will not produce the same output size.
bias: boolIf bias should be added to the output.
initializer: InitializerThe type of function used to initialize neural network parameters
Implementations§
Source§impl Conv2dConfig
impl Conv2dConfig
Source§impl Conv2dConfig
impl Conv2dConfig
Sourcepub fn with_stride(self, stride: [usize; 2]) -> Conv2dConfig
pub fn with_stride(self, stride: [usize; 2]) -> Conv2dConfig
The stride of the convolution.
Sourcepub fn with_dilation(self, dilation: [usize; 2]) -> Conv2dConfig
pub fn with_dilation(self, dilation: [usize; 2]) -> Conv2dConfig
Spacing between kernel elements.
Sourcepub fn with_groups(self, groups: usize) -> Conv2dConfig
pub fn with_groups(self, groups: usize) -> Conv2dConfig
Controls the connections between input and output channels.
Sourcepub fn with_padding(self, padding: PaddingConfig2d) -> Conv2dConfig
pub fn with_padding(self, padding: PaddingConfig2d) -> Conv2dConfig
The padding configuration.
Sourcepub fn with_bias(self, bias: bool) -> Conv2dConfig
pub fn with_bias(self, bias: bool) -> Conv2dConfig
If bias should be added to the output.
Sourcepub fn with_initializer(self, initializer: Initializer) -> Conv2dConfig
pub fn with_initializer(self, initializer: Initializer) -> Conv2dConfig
The type of function used to initialize neural network parameters
Trait Implementations§
Source§impl Clone for Conv2dConfig
impl Clone for Conv2dConfig
Source§fn clone(&self) -> Conv2dConfig
fn clone(&self) -> Conv2dConfig
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Config for Conv2dConfig
impl Config for Conv2dConfig
Source§fn load<P>(file: P) -> Result<Self, ConfigError>
fn load<P>(file: P) -> Result<Self, ConfigError>
Source§fn load_binary(data: &[u8]) -> Result<Self, ConfigError>
fn load_binary(data: &[u8]) -> Result<Self, ConfigError>
Source§impl Debug for Conv2dConfig
impl Debug for Conv2dConfig
Source§impl<'de> Deserialize<'de> for Conv2dConfig
impl<'de> Deserialize<'de> for Conv2dConfig
Source§fn deserialize<D>(
deserializer: D,
) -> Result<Conv2dConfig, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Conv2dConfig, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl Display for Conv2dConfig
impl Display for Conv2dConfig
Source§impl Serialize for Conv2dConfig
impl Serialize for Conv2dConfig
Source§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Auto Trait Implementations§
impl Freeze for Conv2dConfig
impl RefUnwindSafe for Conv2dConfig
impl Send for Conv2dConfig
impl Sync for Conv2dConfig
impl Unpin for Conv2dConfig
impl UnwindSafe for Conv2dConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more