pub struct ComparableFloat(pub Float);Expand description
ComparableFloat is a wrapper around a Float, taking the Float by value.
CompatableFloat has different comparison behavior than Float. See the Float
documentation for its comparison behavior, which is largely derived from the IEEE 754
specification; the ComparableFloat behavior, on the other hand, is more mathematically
well-behaved, and respects the principle that equality should be the finest equivalence
relation: that is, that two equal objects should not be different in any way.
To be more specific: when a Float is wrapped in a ComparableFloat,
NaNis not equal to any otherFloat, but equal to itself;- Positive and negative zero are not equal to each other;
- Ordering is total. Negative zero is ordered to be smaller than positive zero, and
NaNis arbitrarily ordered to be between the two zeros; - Two
Floats with different precisions but representing the same value are unequal, and the one with the greater precision is ordered to be larger; - The hashing function is compatible with equality.
The analogous wrapper for primitive floats is
NiceFloat. However,
NiceFloat also facilitates better string conversion,
something that isn’t necessary for Floats
ComparableFloat owns its float. This is useful in many cases, for example if you want to use
Floats as keys in a hash map. In other situations, it is better to use
ComparableFloatRef, which only has a reference to its float.
Tuple Fields§
§0: FloatImplementations§
Source§impl ComparableFloat
impl ComparableFloat
pub const fn as_ref(&self) -> ComparableFloatRef<'_>
Methods from Deref<Target = Float>§
Sourcepub fn abs_negative_zero_ref(&self) -> Self
pub fn abs_negative_zero_ref(&self) -> Self
If self is negative zero, returns positive zero; otherwise, returns self, taking self
by reference.
This function does not overflow or underflow.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero,
};
use malachite_float::{ComparableFloat, Float};
assert_eq!(
ComparableFloat(Float::NAN.abs_negative_zero_ref()),
ComparableFloat(Float::NAN)
);
assert_eq!(Float::INFINITY.abs_negative_zero_ref(), Float::INFINITY);
assert_eq!(
Float::NEGATIVE_INFINITY.abs_negative_zero_ref(),
Float::NEGATIVE_INFINITY
);
assert_eq!(
ComparableFloat(Float::ZERO.abs_negative_zero_ref()),
ComparableFloat(Float::ZERO)
);
assert_eq!(
ComparableFloat(Float::NEGATIVE_ZERO.abs_negative_zero_ref()),
ComparableFloat(Float::ZERO)
);
assert_eq!(Float::ONE.abs_negative_zero_ref(), Float::ONE);
assert_eq!(
Float::NEGATIVE_ONE.abs_negative_zero_ref(),
Float::NEGATIVE_ONE
);Sourcepub fn add_prec_round_ref_val(
&self,
other: Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_prec_round_ref_val( &self, other: Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Adds two Floats, rounding the result to the specified precision and with the specified
rounding mode. The first Float is taken by reference and the second by value. An
Ordering is also returned, indicating whether the rounded sum is less than, equal to, or
greater than the exact sum. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\infty,-\infty,p,m)=f(-\infty,\infty,p,m)= \text{NaN}$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,p,m)=0.0$
- $f(-0.0,-0.0,p,m)=-0.0$
- $f(0.0,-0.0,p,m)=f(-0.0,0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,-0.0,p,m)=f(-0.0,0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,-x,p,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,-x,p,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::add_prec_ref_val instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::add_round_ref_val instead. If both of these things are true,
consider using + instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact addition.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_prec_round_val_ref(&Float::from(E), 5, Floor);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_val(Float::from(E), 5, Ceiling);
assert_eq!(sum.to_string(), "6.0");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_prec_round_ref_val(Float::from(E), 5, Nearest);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_val(Float::from(E), 20, Floor);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_val(Float::from(E), 20, Ceiling);
assert_eq!(sum.to_string(), "5.85988");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_prec_round_ref_val(Float::from(E), 20, Nearest);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);Sourcepub fn add_prec_round_ref_ref(
&self,
other: &Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_prec_round_ref_ref( &self, other: &Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Adds two Floats, rounding the result to the specified precision and with the specified
rounding mode. Both Floats are taken by reference. An Ordering is also returned,
indicating whether the rounded sum is less than, equal to, or greater than the exact sum.
Although NaNs are not comparable to any Float, whenever this function returns a NaN
it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\infty,-\infty,p,m)=f(-\infty,\infty,p,m)= \text{NaN}$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,p,m)=0.0$
- $f(-0.0,-0.0,p,m)=-0.0$
- $f(0.0,-0.0,p,m)=f(-0.0,0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,-0.0,p,m)=f(-0.0,0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,-x,p,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,-x,p,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::add_prec_ref_ref instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::add_round_ref_ref instead. If both of these things are true,
consider using + instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact addition.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 5, Floor);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 5, Ceiling);
assert_eq!(sum.to_string(), "6.0");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 5, Nearest);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 20, Floor);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 20, Ceiling);
assert_eq!(sum.to_string(), "5.85988");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_prec_round_ref_ref(&Float::from(E), 20, Nearest);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);Sourcepub fn add_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
pub fn add_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
Adds two Floats, rounding the result to the nearest value of the specified precision.
The first Float is taken by reference and the second by value. An Ordering is also
returned, indicating whether the rounded sum is less than, equal to, or greater than the
exact sum. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
If the sum is equidistant from two Floats with the specified precision, the Float
with fewer 1s in its binary expansion is chosen. See RoundingMode for a description of
the Nearest rounding mode.
$$ f(x,y,p) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\infty,-\infty,p)=f(-\infty,\infty,p)=\text{NaN}$
- $f(\infty,x,p)=f(x,\infty,p)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p)=f(x,-\infty,p)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,p)=0.0$
- $f(-0.0,-0.0,p)=-0.0$
- $f(0.0,-0.0,p)=f(-0.0,0.0,p)=0.0$
- $f(x,-x,p)=0.0$ if $x$ is finite and nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::add_prec_round_ref_val instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using + instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = (&Float::from(PI)).add_prec_ref_val(Float::from(E), 5);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = (&Float::from(PI)).add_prec_ref_val(Float::from(E), 20);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);Sourcepub fn add_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
pub fn add_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
Adds two Floats, rounding the result to the nearest value of the specified precision.
Both Floats are taken by reference. An Ordering is also returned, indicating whether
the rounded sum is less than, equal to, or greater than the exact sum. Although NaNs are
not comparable to any Float, whenever this function returns a NaN it also returns
Equal.
If the sum is equidistant from two Floats with the specified precision, the Float
with fewer 1s in its binary expansion is chosen. See RoundingMode for a description of
the Nearest rounding mode.
$$ f(x,y,p) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\infty,-\infty,p)=f(-\infty,\infty,p)=\text{NaN}$
- $f(\infty,x,p)=f(x,\infty,p)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p)=f(x,-\infty,p)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,p)=0.0$
- $f(-0.0,-0.0,p)=-0.0$
- $f(0.0,-0.0,p)=f(-0.0,0.0,p)=0.0$
- $f(x,-x,p)=0.0$ if $x$ is finite and nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::add_prec_round_ref_ref instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using + instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = (&Float::from(PI)).add_prec_ref_ref(&Float::from(E), 5);
assert_eq!(sum.to_string(), "5.8");
assert_eq!(o, Less);
let (sum, o) = (&Float::from(PI)).add_prec_ref_ref(&Float::from(E), 20);
assert_eq!(sum.to_string(), "5.85987");
assert_eq!(o, Less);Sourcepub fn add_round_ref_val(
&self,
other: Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_round_ref_val( &self, other: Self, rm: RoundingMode, ) -> (Self, Ordering)
Adds two Floats, rounding the result with the specified rounding mode. The first
Float is taken by reference and the second by value. An Ordering is also returned,
indicating whether the rounded sum is less than, equal to, or greater than the exact sum.
Although NaNs are not comparable to any Float, whenever this function returns a NaN
it also returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\infty,-\infty,m)=f(-\infty,\infty,m)= \text{NaN}$
- $f(\infty,x,m)=f(x,\infty,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=f(x,-\infty,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,m)=0.0$
- $f(-0.0,-0.0,m)=-0.0$
- $f(0.0,-0.0,m)=f(-0.0,0.0,m)=0.0$ if $m$ is not
Floor - $f(0.0,-0.0,m)=f(-0.0,0.0,m)=-0.0$ if $m$ is
Floor - $f(0.0,x,m)=f(x,0.0,m)=f(-0.0,x,m)=f(x,-0.0,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,-x,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,-x,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::add_prec_round_ref_val
instead. If you know you’ll be using the Nearest rounding mode, consider using +
instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is self.significant_bits().
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = (&Float::from(PI)).add_round_ref_val(Float::from(E), Floor);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);
let (sum, o) = (&Float::from(PI)).add_round_ref_val(Float::from(E), Ceiling);
assert_eq!(sum.to_string(), "5.859874482048839");
assert_eq!(o, Greater);
let (sum, o) = (&Float::from(PI)).add_round_ref_val(Float::from(E), Nearest);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);Sourcepub fn add_round_ref_ref(
&self,
other: &Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_round_ref_ref( &self, other: &Self, rm: RoundingMode, ) -> (Self, Ordering)
Adds two Floats, rounding the result with the specified rounding mode. Both Floats
are taken by reference. An Ordering is also returned, indicating whether the rounded sum
is less than, equal to, or greater than the exact sum. Although NaNs are not comparable to
any Float, whenever this function returns a NaN it also returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\infty,-\infty,m)=f(-\infty,\infty,m)= \text{NaN}$
- $f(\infty,x,m)=f(x,\infty,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=f(x,-\infty,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0.0,m)=0.0$
- $f(-0.0,-0.0,m)=-0.0$
- $f(0.0,-0.0,m)=f(-0.0,0.0,m)=0.0$ if $m$ is not
Floor - $f(0.0,-0.0,m)=f(-0.0,0.0,m)=-0.0$ if $m$ is
Floor - $f(0.0,x,m)=f(x,0.0,m)=f(-0.0,x,m)=f(x,-0.0,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,-x,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,-x,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::add_prec_round_ref_ref
instead. If you know you’ll be using the Nearest rounding mode, consider using +
instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_round_ref_ref(&Float::from(E), Floor);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_round_ref_ref(&Float::from(E), Ceiling);
assert_eq!(sum.to_string(), "5.859874482048839");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_round_ref_ref(&Float::from(E), Nearest);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);Sourcepub fn add_rational_prec_round_ref_val(
&self,
other: Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_rational_prec_round_ref_val( &self, other: Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result to the specified precision and with
the specified rounding mode. The Float is taken by reference and the Rational by
value. An Ordering is also returned, indicating whether the rounded sum is less than,
equal to, or greater than the exact sum. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$
- $f(-\infty,x,p,m)=-\infty$
- $f(0.0,0,p,m)=0.0$
- $f(-0.0,0,p,m)=-0.0$
- $f(x,-x,p,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,-x,p,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::add_rational_prec_ref_val
instead. If you know that your target precision is the precision of the Float input,
consider using Float::add_rational_round_ref_val instead. If both of these things are
true, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact addition.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(sum.to_string(), "3.4");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(sum.to_string(), "3.5");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(sum.to_string(), "3.5");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(sum.to_string(), "3.474922");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(sum.to_string(), "3.474926");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(sum.to_string(), "3.474926");
assert_eq!(o, Greater);Sourcepub fn add_rational_prec_round_ref_ref(
&self,
other: &Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_rational_prec_round_ref_ref( &self, other: &Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result to the specified precision and with
the specified rounding mode. The Float and the Rational are both taken by reference.
An Ordering is also returned, indicating whether the rounded sum is less than, equal to,
or greater than the exact sum. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$
- $f(-\infty,x,p,m)=-\infty$
- $f(0.0,0,p,m)=0.0$
- $f(-0.0,0,p,m)=-0.0$
- $f(x,-x,p,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,-x,p,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::add_rational_prec_ref_ref
instead. If you know that your target precision is the precision of the Float input,
consider using Float::add_rational_round_ref_ref instead. If both of these things are
true, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact addition.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(sum.to_string(), "3.4");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(sum.to_string(), "3.5");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(sum.to_string(), "3.5");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(sum.to_string(), "3.474922");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(sum.to_string(), "3.474926");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(sum.to_string(), "3.474926");
assert_eq!(o, Greater);Sourcepub fn add_rational_prec_ref_val(
&self,
other: Rational,
prec: u64,
) -> (Self, Ordering)
pub fn add_rational_prec_ref_val( &self, other: Rational, prec: u64, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result to the nearest value of the
specified precision. The Float is taken by reference and the Rational by value. An
Ordering is also returned, indicating whether the rounded sum is less than, equal to, or
greater than the exact sum. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
If the sum is equidistant from two Floats with the specified precision, the Float
with fewer 1s in its binary expansion is chosen. See RoundingMode for a description of
the Nearest rounding mode.
$$ f(x,y,p) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$
- $f(-\infty,x,p)=-\infty$
- $f(0.0,0,p)=0.0$
- $f(-0.0,0,p)=-0.0$
- $f(x,-x,p)=0.0$ if $x$ is nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::add_rational_prec_round_ref_val instead. If you know that your target precision
is the precision of the Float input, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_rational_prec_ref_val(Rational::exact_from(1.5), 5);
assert_eq!(sum.to_string(), "4.8");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_ref_val(Rational::exact_from(1.5), 20);
assert_eq!(sum.to_string(), "4.641594");
assert_eq!(o, Greater);Sourcepub fn add_rational_prec_ref_ref(
&self,
other: &Rational,
prec: u64,
) -> (Self, Ordering)
pub fn add_rational_prec_ref_ref( &self, other: &Rational, prec: u64, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result to the nearest value of the
specified precision. The Float and the Rational are both are taken by reference. An
Ordering is also returned, indicating whether the rounded sum is less than, equal to, or
greater than the exact sum. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
If the sum is equidistant from two Floats with the specified precision, the Float
with fewer 1s in its binary expansion is chosen. See RoundingMode for a description of
the Nearest rounding mode.
$$ f(x,y,p) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$
- $f(-\infty,x,p)=-\infty$
- $f(0.0,0,p)=0.0$
- $f(-0.0,0,p)=-0.0$
- $f(x,-x,p)=0.0$ if $x$ is nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::add_rational_prec_round_ref_ref instead. If you know that your target precision
is the precision of the Float input, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).add_rational_prec_ref_ref(&Rational::exact_from(1.5), 5);
assert_eq!(sum.to_string(), "4.8");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).add_rational_prec_ref_ref(&Rational::exact_from(1.5), 20);
assert_eq!(sum.to_string(), "4.641594");
assert_eq!(o, Greater);Sourcepub fn add_rational_round_ref_val(
&self,
other: Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_rational_round_ref_val( &self, other: Rational, rm: RoundingMode, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result with the specified rounding mode.
The Float is taken by reference and the Float by value. An Ordering is also
returned, indicating whether the rounded sum is less than, equal to, or greater than the
exact sum. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0,m)=0.0$
- $f(-0.0,0,m)=-0.0$
- $f(0.0,x,m)=f(x,0,m)=f(-0.0,x,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,-x,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,-x,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::add_rational_prec_round_ref_val instead. If you know you’ll be using the
Nearest rounding mode, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) =
Float::from(PI).add_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(sum.to_string(), "3.474925986923125");
assert_eq!(o, Less);
let (sum, o) =
Float::from(PI).add_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(sum.to_string(), "3.474925986923129");
assert_eq!(o, Greater);
let (sum, o) =
Float::from(PI).add_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(sum.to_string(), "3.474925986923125");
assert_eq!(o, Less);Sourcepub fn add_rational_round_ref_ref(
&self,
other: &Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn add_rational_round_ref_ref( &self, other: &Rational, rm: RoundingMode, ) -> (Self, Ordering)
Adds a Float and a Rational, rounding the result with the specified rounding mode.
The Float and the Rational are both are taken by reference. An Ordering is also
returned, indicating whether the rounded sum is less than, equal to, or greater than the
exact sum. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x+y+\varepsilon. $$
- If $x+y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x+y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x+y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x+y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0,m)=0.0$
- $f(-0.0,0,m)=-0.0$
- $f(0.0,x,m)=f(x,0,m)=f(-0.0,x,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,-x,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,-x,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::add_rational_prec_round_ref_ref instead. If you know you’ll be using the
Nearest rounding mode, consider using + instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) =
Float::from(PI).add_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(sum.to_string(), "3.474925986923125");
assert_eq!(o, Less);
let (sum, o) =
Float::from(PI).add_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(sum.to_string(), "3.474925986923129");
assert_eq!(o, Greater);
let (sum, o) =
Float::from(PI).add_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(sum.to_string(), "3.474925986923125");
assert_eq!(o, Less);Sourcepub fn div_prec_round_ref_val(
&self,
other: Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_prec_round_ref_val( &self, other: Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Divides two Floats, rounding the result to the specified precision and with the
specified rounding mode. The first Float is are taken by reference and the second by
value. An Ordering is also returned, indicating whether the rounded quotient is less
than, equal to, or greater than the exact quotient. Although NaNs are not comparable to
any Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,p,m)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,p,m)=\infty$ if $x>0.0$
- $f(x,0.0,p,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,p,m)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,p,m)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,p,m)=-\infty$ if $x>0.0$
- $f(x,-0.0,p,m)=\infty$ if $x<0.0$
- $f(0.0,x,p,m)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,p,m)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p,m)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,p,m)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::div_prec_ref_val instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::div_round_ref_val instead. If both of these things are true,
consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact division.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 5, Floor);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 5, Ceiling);
assert_eq!(quotient.to_string(), "1.19");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 5, Nearest);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 20, Floor);
assert_eq!(quotient.to_string(), "1.155725");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 20, Ceiling);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_prec_round_ref_val(Float::from(E), 20, Nearest);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);Sourcepub fn div_prec_round_ref_ref(
&self,
other: &Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_prec_round_ref_ref( &self, other: &Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Divides two Floats, rounding the result to the specified precision and with the
specified rounding mode. Both Floats are taken by reference. An Ordering is also
returned, indicating whether the rounded quotient is less than, equal to, or greater than
the exact quotient. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,p,m)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,p,m)=\infty$ if $x>0.0$
- $f(x,0.0,p,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,p,m)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,p,m)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,p,m)=-\infty$ if $x>0.0$
- $f(x,-0.0,p,m)=\infty$ if $x<0.0$
- $f(0.0,x,p,m)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,p,m)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p,m)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,p,m)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::div_prec_ref_ref instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::div_round_ref_ref instead. If both of these things are true,
consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact division.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 5, Floor);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 5, Ceiling);
assert_eq!(quotient.to_string(), "1.19");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 5, Nearest);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 20, Floor);
assert_eq!(quotient.to_string(), "1.155725");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 20, Ceiling);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_prec_round_ref_ref(&Float::from(E), 20, Nearest);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);Sourcepub fn div_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
pub fn div_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
Divides two Floats, rounding the result to the nearest value of the specified precision.
The first Float is taken by reference and the second by value. An Ordering is also
returned, indicating whether the rounded quotient is less than, equal to, or greater than
the exact quotient. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
If the quotient is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,p)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,p)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,p)=\infty$ if $x>0.0$
- $f(x,0.0,p)=-\infty$ if $x<0.0$
- $f(-\infty,x,p)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,p)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,p)=-\infty$ if $x>0.0$
- $f(x,-0.0,p)=\infty$ if $x<0.0$
- $f(0.0,x,p)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,p)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,p)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::div_prec_round_ref_val instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_prec_ref_val(Float::from(E), 5);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_ref_val(Float::from(E), 20);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);Sourcepub fn div_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
pub fn div_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
Divides two Floats, rounding the result to the nearest value of the specified precision.
Both Floats are taken by reference. An Ordering is also returned, indicating whether
the rounded quotient is less than, equal to, or greater than the exact quotient. Although
NaNs are not comparable to any Float, whenever this function returns a NaN it also
returns Equal.
If the quotient is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,p)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,p)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,p)=\infty$ if $x>0.0$
- $f(x,0.0,p)=-\infty$ if $x<0.0$
- $f(-\infty,x,p)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,p)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,p)=-\infty$ if $x>0.0$
- $f(x,-0.0,p)=\infty$ if $x<0.0$
- $f(0.0,x,p)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,p)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,p)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::div_prec_round_ref_ref instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_prec_ref_ref(&Float::from(E), 5);
assert_eq!(quotient.to_string(), "1.12");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_prec_ref_ref(&Float::from(E), 20);
assert_eq!(quotient.to_string(), "1.155727");
assert_eq!(o, Greater);Sourcepub fn div_round_ref_val(
&self,
other: Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_round_ref_val( &self, other: Self, rm: RoundingMode, ) -> (Self, Ordering)
Divides two Floats, rounding the result with the specified rounding mode. The first
Float is taken by reference and the second by value. An Ordering is also returned,
indicating whether the rounded quotient is less than, equal to, or greater than the exact
quotient. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,m)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,m)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,m)=\infty$ if $x>0.0$
- $f(x,0.0,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,m)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,m)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,m)=-\infty$ if $x>0.0$
- $f(x,-0.0,m)=\infty$ if $x<0.0$
- $f(0.0,x,m)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,m)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,m)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,m)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::div_prec_round_ref_val
instead. If you know you’ll be using the Nearest rounding mode, consider using /
instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_round_ref_val(Float::from(E), Floor);
assert_eq!(quotient.to_string(), "1.1557273497909217");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_round_ref_val(Float::from(E), Ceiling);
assert_eq!(quotient.to_string(), "1.155727349790922");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_round_ref_val(Float::from(E), Nearest);
assert_eq!(quotient.to_string(), "1.1557273497909217");
assert_eq!(o, Less);Sourcepub fn div_round_ref_ref(
&self,
other: &Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_round_ref_ref( &self, other: &Self, rm: RoundingMode, ) -> (Self, Ordering)
Divides two Floats, rounding the result with the specified rounding mode. Both
Floats are taken by reference. An Ordering is also returned, indicating whether the
rounded quotient is less than, equal to, or greater than the exact quotient. Although NaNs
are not comparable to any Float, whenever this function returns a NaN it also returns
Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm\infty,p,m)=f(\pm0.0,\pm0.0,p,m) = \text{NaN}$
- $f(\infty,x,m)=\infty$ if $0.0<x<\infty$
- $f(\infty,x,m)=-\infty$ if $-\infty<x<0.0$
- $f(x,0.0,m)=\infty$ if $x>0.0$
- $f(x,0.0,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,m)=-\infty$ if $0.0<x<\infty$
- $f(-\infty,x,m)=\infty$ if $-\infty<x<0.0$
- $f(x,-0.0,m)=-\infty$ if $x>0.0$
- $f(x,-0.0,m)=\infty$ if $x<0.0$
- $f(0.0,x,m)=0.0$ if $x$ is not NaN and $x>0.0$
- $f(0.0,x,m)=-0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,\infty,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,\infty,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,m)=-0.0$ if $x$ is not NaN and $x>0.0$
- $f(-0.0,x,m)=0.0$ if $x$ is not NaN and $x<0.0$
- $f(x,-\infty,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(x,-\infty,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::div_prec_round_ref_ref
instead. If you know you’ll be using the Nearest rounding mode, consider using /
instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_round_ref_ref(&Float::from(E), Floor);
assert_eq!(quotient.to_string(), "1.1557273497909217");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_round_ref_ref(&Float::from(E), Ceiling);
assert_eq!(quotient.to_string(), "1.155727349790922");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_round_ref_ref(&Float::from(E), Nearest);
assert_eq!(quotient.to_string(), "1.1557273497909217");
assert_eq!(o, Less);Sourcepub fn div_rational_prec_round_ref_val(
&self,
other: Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_rational_prec_round_ref_val( &self, other: Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float is taken by reference and the Rational
by value. An Ordering is also returned, indicating whether the rounded quotient is less
than, equal to, or greater than the exact quotient. Although NaNs are not comparable to
any Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(\pm\infty,0,p,m)=f(\pm0.0,0,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x\geq 0$
- $f(\infty,x,p,m)=-\infty$ if $x<0$
- $f(-\infty,x,p,m)=-\infty$ if $x\geq 0$
- $f(-\infty,x,p,m)=\infty$ if $x<0$
- $f(0.0,x,p,m)=0.0$ if $x>0$
- $f(0.0,x,p,m)=-0.0$ if $x<0$
- $f(-0.0,x,p,m)=-0.0$ if $x>0$
- $f(-0.0,x,p,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::div_rational_prec_ref_val
instead. If you know that your target precision is the precision of the Float input,
consider using Float::div_rational_round_ref_val instead. If both of these things are
true, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact division.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(quotient.to_string(), "9.0");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(quotient.to_string(), "9.5");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(quotient.to_string(), "9.5");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(quotient.to_string(), "9.42477");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(quotient.to_string(), "9.42479");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(quotient.to_string(), "9.42477");
assert_eq!(o, Less);Sourcepub fn div_rational_prec_round_ref_ref(
&self,
other: &Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_rational_prec_round_ref_ref( &self, other: &Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float and the Rational are both taken by
reference. An Ordering is also returned, indicating whether the rounded quotient is less
than, equal to, or greater than the exact quotient. Although NaNs are not comparable to
any Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(\pm\infty,0,p,m)=f(\pm0.0,0,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x\geq 0$
- $f(\infty,x,p,m)=-\infty$ if $x<0$
- $f(-\infty,x,p,m)=-\infty$ if $x\geq 0$
- $f(-\infty,x,p,m)=\infty$ if $x<0$
- $f(0.0,x,p,m)=0.0$ if $x>0$
- $f(0.0,x,p,m)=-0.0$ if $x<0$
- $f(-0.0,x,p,m)=-0.0$ if $x>0$
- $f(-0.0,x,p,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::div_rational_prec_ref_ref
instead. If you know that your target precision is the precision of the Float input,
consider using Float::div_rational_round_ref_ref instead. If both of these things are
true, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact division.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(quotient.to_string(), "9.0");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(quotient.to_string(), "9.5");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(quotient.to_string(), "9.5");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(quotient.to_string(), "9.42477");
assert_eq!(o, Less);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(quotient.to_string(), "9.42479");
assert_eq!(o, Greater);
let (quotient, o) = Float::from(PI).div_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(quotient.to_string(), "9.42477");
assert_eq!(o, Less);Sourcepub fn div_rational_prec_ref_val(
&self,
other: Rational,
prec: u64,
) -> (Self, Ordering)
pub fn div_rational_prec_ref_val( &self, other: Rational, prec: u64, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float is taken by reference and the Rational by value. An
Ordering is also returned, indicating whether the rounded quotient is less than, equal
to, or greater than the exact quotient. Although NaNs are not comparable to any Float,
whenever this function returns a NaN it also returns Equal.
If the quotient is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(\pm\infty,0,p)=f(\pm0.0,0,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x\geq 0$
- $f(\infty,x,p)=-\infty$ if $x<0$
- $f(-\infty,x,p)=-\infty$ if $x\geq 0$
- $f(-\infty,x,p)=\infty$ if $x<0$
- $f(0.0,x,p)=0.0$ if $x>0$
- $f(0.0,x,p)=-0.0$ if $x<0$
- $f(-0.0,x,p)=-0.0$ if $x>0$
- $f(-0.0,x,p)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::div_rational_prec_round_ref_val instead. If you know that your target precision
is the precision of the Float input, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) = Float::from(PI).div_rational_prec_ref_val(Rational::exact_from(1.5), 5);
assert_eq!(quotient.to_string(), "2.1");
assert_eq!(o, Greater);
let (quotient, o) =
Float::from(PI).div_rational_prec_ref_val(Rational::exact_from(1.5), 20);
assert_eq!(quotient.to_string(), "2.094395");
assert_eq!(o, Less);Sourcepub fn div_rational_prec_ref_ref(
&self,
other: &Rational,
prec: u64,
) -> (Self, Ordering)
pub fn div_rational_prec_ref_ref( &self, other: &Rational, prec: u64, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float and the Rational are both are taken by reference. An
Ordering is also returned, indicating whether the rounded quotient is less than, equal
to, or greater than the exact quotient. Although NaNs are not comparable to any Float,
whenever this function returns a NaN it also returns Equal.
If the quotient is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(\pm\infty,0,p)=f(\pm0.0,0,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x\geq 0$
- $f(\infty,x,p)=-\infty$ if $x<0$
- $f(-\infty,x,p)=-\infty$ if $x\geq 0$
- $f(-\infty,x,p)=\infty$ if $x<0$
- $f(0.0,x,p)=0.0$ if $x>0$
- $f(0.0,x,p)=-0.0$ if $x<0$
- $f(-0.0,x,p)=-0.0$ if $x>0$
- $f(-0.0,x,p)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::div_rational_prec_round_ref_ref instead. If you know that your target precision
is the precision of the Float input, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) =
Float::from(PI).div_rational_prec_ref_ref(&Rational::exact_from(1.5), 5);
assert_eq!(quotient.to_string(), "2.1");
assert_eq!(o, Greater);
let (quotient, o) =
Float::from(PI).div_rational_prec_ref_ref(&Rational::exact_from(1.5), 20);
assert_eq!(quotient.to_string(), "2.094395");
assert_eq!(o, Less);Sourcepub fn div_rational_round_ref_val(
&self,
other: Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_rational_round_ref_val( &self, other: Rational, rm: RoundingMode, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result with the specified rounding mode.
The Float is taken by reference and the Rational by value. An Ordering is also
returned, indicating whether the rounded quotient is less than, equal to, or greater than
the exact quotient. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=f(\pm\infty,0,m)=f(\pm0.0,0,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x\geq 0$
- $f(\infty,x,m)=-\infty$ if $x<0$
- $f(-\infty,x,m)=-\infty$ if $x\geq 0$
- $f(-\infty,x,m)=\infty$ if $x<0$
- $f(0.0,x,m)=0.0$ if $x>0$
- $f(0.0,x,m)=-0.0$ if $x<0$
- $f(-0.0,x,m)=-0.0$ if $x>0$
- $f(-0.0,x,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::div_rational_prec_round_ref_val instead. If you know you’ll be using the
Nearest rounding mode, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) =
Float::from(PI).div_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(quotient.to_string(), "9.42477796076938");
assert_eq!(o, Less);
let (quotient, o) =
Float::from(PI).div_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(quotient.to_string(), "9.42477796076939");
assert_eq!(o, Greater);
let (quotient, o) =
Float::from(PI).div_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(quotient.to_string(), "9.42477796076938");
assert_eq!(o, Less);Sourcepub fn div_rational_round_ref_ref(
&self,
other: &Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn div_rational_round_ref_ref( &self, other: &Rational, rm: RoundingMode, ) -> (Self, Ordering)
Divides a Float by a Rational, rounding the result with the specified rounding mode.
The Float and the Rational are both are taken by reference. An Ordering is also
returned, indicating whether the rounded quotient is less than, equal to, or greater than
the exact quotient. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x/y+\varepsilon. $$
- If $x/y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x/y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x/y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x/y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=f(\pm\infty,0,m)=f(\pm0.0,0,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x\geq 0$
- $f(\infty,x,m)=-\infty$ if $x<0$
- $f(-\infty,x,m)=-\infty$ if $x\geq 0$
- $f(-\infty,x,m)=\infty$ if $x<0$
- $f(0.0,x,m)=0.0$ if $x>0$
- $f(0.0,x,m)=-0.0$ if $x<0$
- $f(-0.0,x,m)=-0.0$ if $x>0$
- $f(-0.0,x,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::div_rational_prec_round_ref_ref instead. If you know you’ll be using the
Nearest rounding mode, consider using / instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (quotient, o) =
Float::from(PI).div_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(quotient.to_string(), "9.42477796076938");
assert_eq!(o, Less);
let (quotient, o) =
Float::from(PI).div_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(quotient.to_string(), "9.42477796076939");
assert_eq!(o, Greater);
let (quotient, o) =
Float::from(PI).div_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(quotient.to_string(), "9.42477796076938");
assert_eq!(o, Less);Sourcepub fn mul_prec_round_ref_val(
&self,
other: Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_prec_round_ref_val( &self, other: Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies two Floats, rounding the result to the specified precision and with the
specified rounding mode. The first Float is are taken by reference and the second by
value. An Ordering is also returned, indicating whether the rounded product is less
than, equal to, or greater than the exact product. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm0.0,p,m)=f(\pm0.0,\pm\infty,p,m) = \text{NaN}$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=\infty$ if $x>0.0$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=-\infty$ if $x>0.0$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=\infty$ if $x<0.0$
- $f(0.0,x,p,m)=f(x,0.0,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,p,m)=f(x,0.0,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p,m)=f(x,-0.0,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,p,m)=f(x,-0.0,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::mul_prec_ref_val instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::mul_round_ref_val instead. If both of these things are true,
consider using * instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact multiplication.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 5, Floor);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 5, Ceiling);
assert_eq!(product.to_string(), "9.0");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 5, Nearest);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 20, Floor);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 20, Ceiling);
assert_eq!(product.to_string(), "8.53975");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_prec_round_ref_val(Float::from(E), 20, Nearest);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);Sourcepub fn mul_prec_round_ref_ref(
&self,
other: &Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_prec_round_ref_ref( &self, other: &Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies two Floats, rounding the result to the specified precision and with the
specified rounding mode. Both Floats are taken by reference. An Ordering is also
returned, indicating whether the rounded product is less than, equal to, or greater than the
exact product. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\pm\infty,\pm0.0,p,m)=f(\pm0.0,\pm\infty,p,m) = \text{NaN}$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=\infty$ if $x>0.0$
- $f(\infty,x,p,m)=f(x,\infty,p,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=-\infty$ if $x>0.0$
- $f(-\infty,x,p,m)=f(x,-\infty,p,m)=\infty$ if $x<0.0$
- $f(0.0,x,p,m)=f(x,0.0,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,p,m)=f(x,0.0,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p,m)=f(x,-0.0,p,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,p,m)=f(x,-0.0,p,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::mul_prec_ref_ref instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::mul_round_ref_ref instead. If both of these things are true,
consider using * instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact multiplication.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 5, Floor);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 5, Ceiling);
assert_eq!(product.to_string(), "9.0");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 5, Nearest);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 20, Floor);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 20, Ceiling);
assert_eq!(product.to_string(), "8.53975");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_prec_round_ref_ref(&Float::from(E), 20, Nearest);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);Sourcepub fn mul_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
pub fn mul_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
Multiplies two Floats, rounding the result to the nearest value of the specified
precision. The first Float is taken by reference and the second by value. An
Ordering is also returned, indicating whether the rounded product is less than, equal
to, or greater than the exact product. Although NaNs are not comparable to any Float,
whenever this function returns a NaN it also returns Equal.
If the product is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\pm\infty,\pm0.0,p)=f(\pm0.0,\pm\infty,p) = \text{NaN}$
- $f(\infty,x,p)=f(x,\infty,p)=\infty$ if $x>0.0$
- $f(\infty,x,p)=f(x,\infty,p)=-\infty$ if $x<0.0$
- $f(-\infty,x,p)=f(x,-\infty,p)=-\infty$ if $x>0.0$
- $f(-\infty,x,p)=f(x,-\infty,p)=\infty$ if $x<0.0$
- $f(0.0,x,p)=f(x,0.0,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,p)=f(x,0.0,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p)=f(x,-0.0,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,p)=f(x,-0.0,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::mul_prec_round_ref_val instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using * instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_prec_ref_val(Float::from(E), 5);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_ref_val(Float::from(E), 20);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);Sourcepub fn mul_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
pub fn mul_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
Multiplies two Floats, rounding the result to the nearest value of the specified
precision. Both Floats are taken by reference. An Ordering is also returned,
indicating whether the rounded product is less than, equal to, or greater than the exact
product. Although NaNs are not comparable to any Float, whenever this function returns
a NaN it also returns Equal.
If the product is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\pm\infty,\pm0.0,p)=f(\pm0.0,\pm\infty,p) = \text{NaN}$
- $f(\infty,x,p)=f(x,\infty,p)=\infty$ if $x>0.0$
- $f(\infty,x,p)=f(x,\infty,p)=-\infty$ if $x<0.0$
- $f(-\infty,x,p)=f(x,-\infty,p)=-\infty$ if $x>0.0$
- $f(-\infty,x,p)=f(x,-\infty,p)=\infty$ if $x<0.0$
- $f(0.0,x,p)=f(x,0.0,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,p)=f(x,0.0,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,p)=f(x,-0.0,p)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,p)=f(x,-0.0,p)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::mul_prec_round_ref_ref instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using * instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_prec_ref_ref(&Float::from(E), 5);
assert_eq!(product.to_string(), "8.5");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_prec_ref_ref(&Float::from(E), 20);
assert_eq!(product.to_string(), "8.53973");
assert_eq!(o, Less);Sourcepub fn mul_round_ref_val(
&self,
other: Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_round_ref_val( &self, other: Self, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies two Floats, rounding the result with the specified rounding mode. The first
Float is taken by reference and the second by value. An Ordering is also returned,
indicating whether the rounded product is less than, equal to, or greater than the exact
product. Although NaNs are not comparable to any Float, whenever this function returns
a NaN it also returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\pm\infty,\pm0.0,m)=f(\pm0.0,\pm\infty,m) = \text{NaN}$
- $f(\infty,x,m)=f(x,\infty,m)=\infty$ if $x>0.0$
- $f(\infty,x,m)=f(x,\infty,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,m)=f(x,-\infty,m)=-\infty$ if $x>0.0$
- $f(-\infty,x,m)=f(x,-\infty,m)=\infty$ if $x<0.0$
- $f(0.0,x,m)=f(x,0.0,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,m)=f(x,0.0,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,m)=f(x,-0.0,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,m)=f(x,-0.0,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::mul_prec_round_ref_val
instead. If you know you’ll be using the Nearest rounding mode, consider using *
instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_round_ref_val(Float::from(E), Floor);
assert_eq!(product.to_string(), "8.539734222673566");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_round_ref_val(Float::from(E), Ceiling);
assert_eq!(product.to_string(), "8.539734222673568");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_round_ref_val(Float::from(E), Nearest);
assert_eq!(product.to_string(), "8.539734222673566");
assert_eq!(o, Less);Sourcepub fn mul_round_ref_ref(
&self,
other: &Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_round_ref_ref( &self, other: &Self, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies two Floats, rounding the result with the specified rounding mode. Both
Floats are taken by reference. An Ordering is also returned, indicating whether the
rounded product is less than, equal to, or greater than the exact product. Although NaNs
are not comparable to any Float, whenever this function returns a NaN it also returns
Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\pm\infty,\pm0.0,m)=f(\pm0.0,\pm\infty,m) = \text{NaN}$
- $f(\infty,x,m)=f(x,\infty,m)=\infty$ if $x>0.0$
- $f(\infty,x,m)=f(x,\infty,m)=-\infty$ if $x<0.0$
- $f(-\infty,x,m)=f(x,-\infty,m)=-\infty$ if $x>0.0$
- $f(-\infty,x,m)=f(x,-\infty,m)=\infty$ if $x<0.0$
- $f(0.0,x,m)=f(x,0.0,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(0.0,x,m)=f(x,0.0,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
- $f(-0.0,x,m)=f(x,-0.0,m)=-0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=0.0$ or $x>0.0$
- $f(-0.0,x,m)=f(x,-0.0,m)=0.0$ if $x$ is not NaN or $\pm\infty$, and if $x=-0.0$ or $x<0.0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::mul_prec_round_ref_ref
instead. If you know you’ll be using the Nearest rounding mode, consider using *
instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_round_ref_ref(&Float::from(E), Floor);
assert_eq!(product.to_string(), "8.539734222673566");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_round_ref_ref(&Float::from(E), Ceiling);
assert_eq!(product.to_string(), "8.539734222673568");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_round_ref_ref(&Float::from(E), Nearest);
assert_eq!(product.to_string(), "8.539734222673566");
assert_eq!(o, Less);Sourcepub fn mul_rational_prec_round_ref_val(
&self,
other: Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_rational_prec_round_ref_val( &self, other: Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float is taken by reference and the Rational
by value. An Ordering is also returned, indicating whether the rounded product is less
than, equal to, or greater than the exact product. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(\pm\infty,0,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x>0$
- $f(\infty,x,p,m)=-\infty$ if $x<0$
- $f(-\infty,x,p,m)=-\infty$ if $x>0$
- $f(-\infty,x,p,m)=\infty$ if $x<0$
- $f(0.0,x,p,m)=0.0$ if $x\geq0$
- $f(0.0,x,p,m)=-0.0$ if $x<0$
- $f(-0.0,x,p,m)=-0.0$ if $x\geq0$
- $f(-0.0,x,p,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::mul_rational_prec_ref_val
instead. If you know that your target precision is the precision of the Float input,
consider using Float::mul_rational_round_ref_val instead. If both of these things are
true, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact multiplication.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(product.to_string(), "1.0");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(product.to_string(), "1.06");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(product.to_string(), "1.06");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(product.to_string(), "1.047197");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(product.to_string(), "1.047199");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(product.to_string(), "1.047197");
assert_eq!(o, Less);Sourcepub fn mul_rational_prec_round_ref_ref(
&self,
other: &Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_rational_prec_round_ref_ref( &self, other: &Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float and the Rational are both taken by
reference. An Ordering is also returned, indicating whether the rounded product is less
than, equal to, or greater than the exact product. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(\pm\infty,0,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x>0$
- $f(\infty,x,p,m)=-\infty$ if $x<0$
- $f(-\infty,x,p,m)=-\infty$ if $x>0$
- $f(-\infty,x,p,m)=\infty$ if $x<0$
- $f(0.0,x,p,m)=0.0$ if $x\geq0$
- $f(0.0,x,p,m)=-0.0$ if $x<0$
- $f(-0.0,x,p,m)=-0.0$ if $x\geq0$
- $f(-0.0,x,p,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::mul_rational_prec_ref_ref
instead. If you know that your target precision is the precision of the Float input,
consider using Float::mul_rational_round_ref_ref instead. If both of these things are
true, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact multiplication.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(product.to_string(), "1.0");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(product.to_string(), "1.06");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(product.to_string(), "1.06");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(product.to_string(), "1.047197");
assert_eq!(o, Less);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(product.to_string(), "1.047199");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(product.to_string(), "1.047197");
assert_eq!(o, Less);Sourcepub fn mul_rational_prec_ref_val(
&self,
other: Rational,
prec: u64,
) -> (Self, Ordering)
pub fn mul_rational_prec_ref_val( &self, other: Rational, prec: u64, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float is taken by reference and the Rational by value. An
Ordering is also returned, indicating whether the rounded product is less than, equal
to, or greater than the exact product. Although NaNs are not comparable to any Float,
whenever this function returns a NaN it also returns Equal.
If the product is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(\pm\infty,0,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x>0$
- $f(\infty,x,p)=-\infty$ if $x<0$
- $f(-\infty,x,p)=-\infty$ if $x>0$
- $f(-\infty,x,p)=\infty$ if $x<0$
- $f(0.0,x,p)=0.0$ if $x\geq0$
- $f(0.0,x,p)=-0.0$ if $x<0$
- $f(-0.0,x,p)=-0.0$ if $x\geq0$
- $f(-0.0,x,p)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::mul_rational_prec_round_ref_val instead. If you know that your target precision
is the precision of the Float input, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_rational_prec_ref_val(Rational::exact_from(1.5), 5);
assert_eq!(product.to_string(), "4.8");
assert_eq!(o, Greater);
let (product, o) = Float::from(PI).mul_rational_prec_ref_val(Rational::exact_from(1.5), 20);
assert_eq!(product.to_string(), "4.712387");
assert_eq!(o, Less);Sourcepub fn mul_rational_prec_ref_ref(
&self,
other: &Rational,
prec: u64,
) -> (Self, Ordering)
pub fn mul_rational_prec_ref_ref( &self, other: &Rational, prec: u64, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float and the Rational are both are taken by reference. An
Ordering is also returned, indicating whether the rounded product is less than, equal
to, or greater than the exact product. Although NaNs are not comparable to any Float,
whenever this function returns a NaN it also returns Equal.
If the product is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(\pm\infty,0,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x>0$
- $f(\infty,x,p)=-\infty$ if $x<0$
- $f(-\infty,x,p)=-\infty$ if $x>0$
- $f(-\infty,x,p)=\infty$ if $x<0$
- $f(0.0,x,p)=0.0$ if $x\geq0$
- $f(0.0,x,p)=-0.0$ if $x<0$
- $f(-0.0,x,p)=-0.0$ if $x\geq0$
- $f(-0.0,x,p)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::mul_rational_prec_round_ref_ref instead. If you know that your target precision
is the precision of the Float input, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) = Float::from(PI).mul_rational_prec_ref_ref(&Rational::exact_from(1.5), 5);
assert_eq!(product.to_string(), "4.8");
assert_eq!(o, Greater);
let (product, o) =
Float::from(PI).mul_rational_prec_ref_ref(&Rational::exact_from(1.5), 20);
assert_eq!(product.to_string(), "4.712387");
assert_eq!(o, Less);Sourcepub fn mul_rational_round_ref_val(
&self,
other: Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_rational_round_ref_val( &self, other: Rational, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result with the specified rounding
mode. The Float is taken by reference and the Rational by value. An Ordering is
also returned, indicating whether the rounded product is less than, equal to, or greater
than the exact product. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=f(\pm\infty,0,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x>0$
- $f(\infty,x,m)=-\infty$ if $x<0$
- $f(-\infty,x,m)=-\infty$ if $x>0$
- $f(-\infty,x,m)=\infty$ if $x<0$
- $f(0.0,x,m)=0.0$ if $x\geq0$
- $f(0.0,x,m)=-0.0$ if $x<0$
- $f(-0.0,x,m)=-0.0$ if $x\geq0$
- $f(-0.0,x,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::mul_rational_prec_round_ref_val instead. If you know you’ll be using the
Nearest rounding mode, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) =
Float::from(PI).mul_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(product.to_string(), "1.047197551196597");
assert_eq!(o, Less);
let (product, o) =
Float::from(PI).mul_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(product.to_string(), "1.047197551196598");
assert_eq!(o, Greater);
let (product, o) =
Float::from(PI).mul_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(product.to_string(), "1.047197551196598");
assert_eq!(o, Greater);Sourcepub fn mul_rational_round_ref_ref(
&self,
other: &Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn mul_rational_round_ref_ref( &self, other: &Rational, rm: RoundingMode, ) -> (Self, Ordering)
Multiplies a Float by a Rational, rounding the result with the specified rounding
mode. The Float and the Rational are both are taken by reference. An Ordering is
also returned, indicating whether the rounded product is less than, equal to, or greater
than the exact product. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = xy+\varepsilon. $$
- If $xy$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $xy$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $xy$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |xy|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=f(\pm\infty,0,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x>0$
- $f(\infty,x,m)=-\infty$ if $x<0$
- $f(-\infty,x,m)=-\infty$ if $x>0$
- $f(-\infty,x,m)=\infty$ if $x<0$
- $f(0.0,x,m)=0.0$ if $x\geq0$
- $f(0.0,x,m)=-0.0$ if $x<0$
- $f(-0.0,x,m)=-0.0$ if $x\geq0$
- $f(-0.0,x,m)=0.0$ if $x<0$
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::mul_rational_prec_round_ref_ref instead. If you know you’ll be using the
Nearest rounding mode, consider using * instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (product, o) =
Float::from(PI).mul_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(product.to_string(), "1.047197551196597");
assert_eq!(o, Less);
let (product, o) =
Float::from(PI).mul_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(product.to_string(), "1.047197551196598");
assert_eq!(o, Greater);
let (product, o) =
Float::from(PI).mul_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(product.to_string(), "1.047197551196598");
assert_eq!(o, Greater);Sourcepub fn reciprocal_prec_round_ref(
&self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn reciprocal_prec_round_ref( &self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Takes the reciprocal of a Float, rounding the result to the specified precision and with
the specified rounding mode. The Float is taken by reference. An Ordering is also
returned, indicating whether the rounded reciprocal is less than, equal to, or greater than
the exact reciprocal. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,p,m) = 1/x+\varepsilon. $$
- If $1/x$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $1/x$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |1/x|\rfloor-p+1}$. - If $1/x$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |1/x|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},p,m)=\text{NaN}$
- $f(\infty,p,m)=0.0$
- $f(-\infty,p,m)=-0.0$
- $f(0.0,p,m)=\infty$
- $f(-0.0,p,m)=-\infty$
Overflow:
- If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input.
This function cannot underflow.
If you know you’ll be using Nearest, consider using Float::reciprocal_prec_ref
instead. If you know that your target precision is the precision of the input, consider
using Float::reciprocal_round_ref instead. If both of these things are true, consider
using (&Float)::reciprocal() instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact reciprocation.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(5, Floor);
assert_eq!(reciprocal.to_string(), "0.31");
assert_eq!(o, Less);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(5, Ceiling);
assert_eq!(reciprocal.to_string(), "0.33");
assert_eq!(o, Greater);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(5, Nearest);
assert_eq!(reciprocal.to_string(), "0.31");
assert_eq!(o, Less);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(20, Floor);
assert_eq!(reciprocal.to_string(), "0.3183098");
assert_eq!(o, Less);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(20, Ceiling);
assert_eq!(reciprocal.to_string(), "0.3183103");
assert_eq!(o, Greater);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_round_ref(20, Nearest);
assert_eq!(reciprocal.to_string(), "0.3183098");
assert_eq!(o, Less);Sourcepub fn reciprocal_prec_ref(&self, prec: u64) -> (Self, Ordering)
pub fn reciprocal_prec_ref(&self, prec: u64) -> (Self, Ordering)
Takes the reciprocal of a Float, rounding the result to the nearest value of the
specified precision. The Float is taken by reference. An Ordering is also returned,
indicating whether the rounded reciprocal is less than, equal to, or greater than the exact
reciprocal. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
If the reciprocal is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,p) = 1/x+\varepsilon. $$
- If $1/x$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $1/x$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |1/x|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},p)=\text{NaN}$
- $f(\infty,p)=0.0$
- $f(-\infty,p)=-0.0$
- $f(0.0,p)=\infty$
- $f(-0.0,p)=-\infty$
Overflow:
- If $f(x,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
This function cannot underflow.
If you want to use a rounding mode other than Nearest, consider using
Float::reciprocal_prec_round_ref instead. If you know that your target precision is the
precision of the input, consider using (&Float)::reciprocal() instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (reciprocal, o) = Float::from(PI).reciprocal_prec_ref(5);
assert_eq!(reciprocal.to_string(), "0.31");
assert_eq!(o, Less);
let (reciprocal, o) = Float::from(PI).reciprocal_prec_ref(20);
assert_eq!(reciprocal.to_string(), "0.3183098");
assert_eq!(o, Less);Sourcepub fn reciprocal_round_ref(&self, rm: RoundingMode) -> (Self, Ordering)
pub fn reciprocal_round_ref(&self, rm: RoundingMode) -> (Self, Ordering)
Takes the reciprocal of a Float, rounding the result with the specified rounding mode.
The Float is taken by reference. An Ordering is also returned, indicating whether
the rounded reciprocal is less than, equal to, or greater than the exact reciprocal.
Although NaNs are not comparable to any Float, whenever this function returns a NaN
it also returns Equal.
The precision of the output is the precision of the input. See RoundingMode for a
description of the possible rounding modes.
$$ f(x,y,m) = 1/x+\varepsilon. $$
- If $1/x$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $1/x$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |1/x|\rfloor-p+1}$, where $p$ is the precision of the input. - If $1/x$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |1/x|\rfloor-p}$, where $p$ is the precision of the input.
If the output has a precision, it is the precision of the input.
Special cases:
- $f(\text{NaN},m)=\text{NaN}$
- $f(\infty,m)=0.0$
- $f(-\infty,m)=-0.0$
- $f(0.0,m)=\infty$
- $f(-0.0,m)=-\infty$
Overflow:
- If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input.
This function cannot underflow.
If you want to specify an output precision, consider using
Float::reciprocal_prec_round_ref instead. If you know you’ll be using the Nearest
rounding mode, consider using (&Float)::reciprocal() instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Panics
Panics if rm is Exact but the precision of the input is not high enough to represent the
output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (reciprocal, o) = Float::from(PI).reciprocal_round_ref(Floor);
assert_eq!(reciprocal.to_string(), "0.3183098861837905");
assert_eq!(o, Less);
let (reciprocal, o) = Float::from(PI).reciprocal_round_ref(Ceiling);
assert_eq!(reciprocal.to_string(), "0.318309886183791");
assert_eq!(o, Greater);
let (reciprocal, o) = Float::from(PI).reciprocal_round_ref(Nearest);
assert_eq!(reciprocal.to_string(), "0.3183098861837905");
assert_eq!(o, Less);Sourcepub fn shl_prec_round_ref<T: PrimitiveInt>(
&self,
bits: T,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn shl_prec_round_ref<T: PrimitiveInt>( &self, bits: T, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Left-shifts a Float (multiplies it by a power of 2), rounding the result with the
specified rounding mode and precision, and taking the Float by reference.
NaN, infinities, and zeros are unchanged. If the output has a precision, it is prec.
$$ f(x,k,p,m) = x2^k. $$
- If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepisprec. - If $0<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,k,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,k,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::shl_prec_ref instead. If
you know that your target precision is the precision of the input, consider using
Float::shl_round instead. If both of these things are true, or you don’t care about
overflow or underflow behavior, consider using << instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Panics
Panics if rm is Exact and the result overflows or underflows, or cannot be expressed
exactly with the specified precision.
§Examples
See here.
Sourcepub fn shl_prec_ref<T: PrimitiveInt>(
&self,
bits: T,
prec: u64,
) -> (Self, Ordering)
pub fn shl_prec_ref<T: PrimitiveInt>( &self, bits: T, prec: u64, ) -> (Self, Ordering)
Left-shifts a Float (multiplies it by a power of 2), rounding the result with the
specified precision, and taking the Float by reference.
NaN, infinities, and zeros are unchanged. If the output has a precision, it is prec.
$$ f(x,k,p) = x2^k. $$
- If $f(x,k,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,k,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,k,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,k,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,k,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,k,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you know that your target precision is the precision of the input, or you don’t care
about overflow or underflow behavior, consider using << instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
See here.
Sourcepub fn shr_prec_round_ref<T: PrimitiveInt>(
&self,
bits: T,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn shr_prec_round_ref<T: PrimitiveInt>( &self, bits: T, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Right-shifts a Float (divides it by a power of 2), rounding the result with the
specified rounding mode and precision, and taking the Float by reference.
NaN, infinities, and zeros are unchanged. If the output has a precision, it is prec.
$$ f(x,k,p,m) = x/2^k. $$
- If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,k,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepisprec. - If $0<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,k,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,k,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,k,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,k,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::shr_prec_ref instead. If
you know that your target precision is the precision of the input, consider using
Float::shr_round instead. If both of these things are true, or you don’t care about
overflow or underflow behavior, consider using >> instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Panics
Panics if rm is Exact and the result overflows or underflows, or cannot be expressed
exactly with the specified precision.
§Examples
See here.
Sourcepub fn shr_prec_ref<T: PrimitiveInt>(
&self,
bits: T,
prec: u64,
) -> (Self, Ordering)
pub fn shr_prec_ref<T: PrimitiveInt>( &self, bits: T, prec: u64, ) -> (Self, Ordering)
Right-shifts a Float (divides it by a power of 2), rounding the result with the
specified precision, and taking the Float by reference.
NaN, infinities, and zeros are unchanged. If the output has a precision, it is prec.
$$ f(x,k,p) = x/2^k. $$
- If $f(x,k,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,k,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,k,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,k,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,k,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,k,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you know that your target precision is the precision of the input, or you don’t care
about overflow or underflow behavior, consider using >> instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
See here.
Sourcepub fn square_prec_round_ref(
&self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn square_prec_round_ref( &self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Squares a Float, rounding the result to the specified precision and with the specified
rounding mode. The Float is taken by reference. An Ordering is also returned,
indicating whether the rounded square is less than, equal to, or greater than the exact
square. Although NaNs are not comparable to any Float, whenever this function returns
a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,p,m) = x^2+\varepsilon. $$
- If $x^2$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x^2$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x^2|\rfloor-p+1}$. - If $x^2$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x^2|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},p,m)=\text{NaN}$
- $f(\pm\infty,p,m)=\infty$
- $f(\pm0.0,p,m)=0.0$
Overflow and underflow:
- If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::square_prec_ref instead. If
you know that your target precision is the precision of the input, consider using
Float::square_round_ref instead. If both of these things are true, consider using
(&Float).square()instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is
prec.
§Panics
Panics if rm is Exact but prec is too small for an exact squaring.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (square, o) = Float::from(PI).square_prec_round_ref(5, Floor);
assert_eq!(square.to_string(), "9.5");
assert_eq!(o, Less);
let (square, o) = Float::from(PI).square_prec_round_ref(5, Ceiling);
assert_eq!(square.to_string(), "10.0");
assert_eq!(o, Greater);
let (square, o) = Float::from(PI).square_prec_round_ref(5, Nearest);
assert_eq!(square.to_string(), "10.0");
assert_eq!(o, Greater);
let (square, o) = Float::from(PI).square_prec_round_ref(20, Floor);
assert_eq!(square.to_string(), "9.8696");
assert_eq!(o, Less);
let (square, o) = Float::from(PI).square_prec_round_ref(20, Ceiling);
assert_eq!(square.to_string(), "9.86961");
assert_eq!(o, Greater);
let (square, o) = Float::from(PI).square_prec_round_ref(20, Nearest);
assert_eq!(square.to_string(), "9.8696");
assert_eq!(o, Less);Sourcepub fn square_prec_ref(&self, prec: u64) -> (Self, Ordering)
pub fn square_prec_ref(&self, prec: u64) -> (Self, Ordering)
Squares a Float, rounding the result to the nearest value of the specified precision.
The Float is taken by reference. An Ordering is also returned, indicating whether
the rounded square is less than, equal to, or greater than the exact square. Although NaNs
are not comparable to any Float, whenever this function returns a NaN it also returns
Equal.
If the square is equidistant from two Floats with the specified precision, the Float
with fewer 1s in its binary expansion is chosen. See RoundingMode for a description of
the Nearest rounding mode.
$$ f(x,p) = x^2+\varepsilon. $$
- If $x^2$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x^2$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x^2|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},p)=\text{NaN}$
- $f(\pm\infty,p)=\infty$
- $f(\pm0.0,p)=0.0$
Overflow and underflow:
- If $f(x,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::square_prec_round_ref instead. If you know that your target precision is the
precision of the input, consider using (&Float).square() instead.
§Worst-case complexity
$T(n, m) = O(n \log n \log\log n + m)$
$M(n, m) = O(n \log n + m)$
where $T$ is time, $M$ is additional memory, $n$ is self.significant_bits(), and $m$ is
prec.
§Examples
use core::f64::consts::PI;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (square, o) = Float::from(PI).square_prec_ref(5);
assert_eq!(square.to_string(), "10.0");
assert_eq!(o, Greater);
let (square, o) = Float::from(PI).square_prec_ref(20);
assert_eq!(square.to_string(), "9.8696");
assert_eq!(o, Less);Sourcepub fn square_round_ref(&self, rm: RoundingMode) -> (Self, Ordering)
pub fn square_round_ref(&self, rm: RoundingMode) -> (Self, Ordering)
Squares a Float, rounding the result with the specified rounding mode. The Float is
taken by reference. An Ordering is also returned, indicating whether the rounded square
is less than, equal to, or greater than the exact square. Although NaNs are not comparable
to any Float, whenever this function returns a NaN it also returns Equal.
The precision of the output is the precision of the input. See RoundingMode for a
description of the possible rounding modes.
$$ f(x,y,m) = x^2+\varepsilon. $$
- If $x^2$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x^2$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x^2|\rfloor-p+1}$, where $p$ is the precision of the input. - If $x^2$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x^2|\rfloor-p}$, where $p$ is the precision of the input.
If the output has a precision, it is the precision of the input.
Special cases:
- $f(\text{NaN},m)=\text{NaN}$
- $f(\pm\infty,m)=\infty$
- $f(\pm0.0,m)=0.0$
Overflow and underflow:
- If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::square_prec_round_ref
instead. If you know you’ll be using the Nearest rounding mode, consider using
(&Float).square() instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Panics
Panics if rm is Exact but the precision of the input is not high enough to represent the
output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (square, o) = Float::from(PI).square_round_ref(Floor);
assert_eq!(square.to_string(), "9.86960440108935");
assert_eq!(o, Less);
let (square, o) = Float::from(PI).square_round_ref(Ceiling);
assert_eq!(square.to_string(), "9.86960440108936");
assert_eq!(o, Greater);
let (square, o) = Float::from(PI).square_round_ref(Nearest);
assert_eq!(square.to_string(), "9.86960440108936");
assert_eq!(o, Greater);Sourcepub fn sub_prec_round_ref_val(
&self,
other: Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_prec_round_ref_val( &self, other: Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts two Floats, rounding the result to the specified precision and with the
specified rounding mode. The first Float is taken by reference and the second by value.
An Ordering is also returned, indicating whether the rounded difference is less than,
equal to, or greater than the exact difference. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\infty,\infty,p,m)=f(-\infty,-\infty,p,m)= \text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,p,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p,m)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,p,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,p,m)=0.0$
- $f(-0.0,0.0,p,m)=-0.0$
- $f(0.0,0.0,p,m)=f(-0.0,-0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,p,m)=f(-0.0,-0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,x,p,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,p,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::sub_prec_ref_val instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::sub_round_ref_val instead. If both of these things are true,
consider using - instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact subtraction.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 5, Floor);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 5, Ceiling);
assert_eq!(sum.to_string(), "0.44");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 5, Nearest);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 20, Floor);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 20, Ceiling);
assert_eq!(sum.to_string(), "0.4233112");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_prec_round_ref_val(Float::from(E), 20, Nearest);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);Sourcepub fn sub_prec_round_ref_ref(
&self,
other: &Self,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_prec_round_ref_ref( &self, other: &Self, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts two Floats, rounding the result to the specified precision and with the
specified rounding mode. Both Floats are taken by reference. An Ordering is also
returned, indicating whether the rounded difference is less than, equal to, or greater than
the exact difference. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=f(x,\text{NaN},p,m)=f(\infty,\infty,p,m)=f(-\infty,-\infty,p,m)= \text{NaN}$
- $f(\infty,x,p,m)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,p,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p,m)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,p,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,p,m)=0.0$
- $f(-0.0,0.0,p,m)=-0.0$
- $f(0.0,0.0,p,m)=f(-0.0,-0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,p,m)=f(-0.0,-0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,x,p,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,p,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::sub_prec_ref_ref instead.
If you know that your target precision is the maximum of the precisions of the two inputs,
consider using Float::sub_round_ref_ref instead. If both of these things are true,
consider using - instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Panics
Panics if rm is Exact but prec is too small for an exact subtraction.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 5, Floor);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 5, Ceiling);
assert_eq!(sum.to_string(), "0.44");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 5, Nearest);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 20, Floor);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 20, Ceiling);
assert_eq!(sum.to_string(), "0.4233112");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_prec_round_ref_ref(&Float::from(E), 20, Nearest);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);Sourcepub fn sub_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
pub fn sub_prec_ref_val(&self, other: Self, prec: u64) -> (Self, Ordering)
Subtracts two Floats, rounding the result to the nearest value of the specified
precision. The first Float is taken by reference and the second by value. An
Ordering is also returned, indicating whether the rounded difference is less than, equal
to, or greater than the exact difference. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
If the difference is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\infty,\infty,p)=f(-\infty,-\infty,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,p)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,p)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,p)=0.0$
- $f(-0.0,0.0,p)=-0.0$
- $f(0.0,0.0,p)=f(-0.0,-0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,p)=f(-0.0,-0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,x,p)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,p)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::sub_prec_round_ref_val instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using - instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_prec_ref_val(Float::from(E), 5);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_ref_val(Float::from(E), 20);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);Sourcepub fn sub_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
pub fn sub_prec_ref_ref(&self, other: &Self, prec: u64) -> (Self, Ordering)
Subtracts two Floats, rounding the result to the nearest value of the specified
precision. Both Floats are taken by reference. An Ordering is also returned,
indicating whether the rounded difference is less than, equal to, or greater than the exact
difference. Although NaNs are not comparable to any Float, whenever this function
returns a NaN it also returns Equal.
If the difference is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=f(x,\text{NaN},p)=f(\infty,\infty,p)=f(-\infty,-\infty,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,p)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,p)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,p)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,p)=0.0$
- $f(-0.0,0.0,p)=-0.0$
- $f(0.0,0.0,p)=f(-0.0,-0.0,p,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,p)=f(-0.0,-0.0,p,m)=-0.0$ if $m$ is
Floor - $f(x,x,p)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,p)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::sub_prec_round_ref_ref instead. If you know that your target precision is the
maximum of the precisions of the two inputs, consider using - instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is prec.
§Examples
use core::f64::consts::{E, PI};
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_prec_ref_ref(&Float::from(E), 5);
assert_eq!(sum.to_string(), "0.42");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_prec_ref_ref(&Float::from(E), 20);
assert_eq!(sum.to_string(), "0.4233108");
assert_eq!(o, Less);Sourcepub fn sub_round_ref_val(
&self,
other: Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_round_ref_val( &self, other: Self, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts two Floats, rounding the result with the specified rounding mode. The
Float is taken by reference and the Rational by value. An Ordering is also
returned, indicating whether the rounded difference is less than, equal to, or greater than
the exact difference. Although NaNs are not comparable to any Float, whenever this
function returns a NaN it also returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\infty,\infty,m)=f(-\infty,-\infty,m)= \text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,m)=0.0$
- $f(-0.0,0.0,m)=-0.0$
- $f(0.0,0.0,m)=f(-0.0,-0.0,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,m)=f(-0.0,-0.0,m)=-0.0$ if $m$ is
Floor - $f(x,x,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::sub_prec_round_ref_val
instead. If you know you’ll be using the Nearest rounding mode, consider using -
instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits()), and $m$ is self.significant_bits().
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_round_ref_val(Float::from(-E), Floor);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_round_ref_val(Float::from(-E), Ceiling);
assert_eq!(sum.to_string(), "5.859874482048839");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_round_ref_val(Float::from(-E), Nearest);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);Sourcepub fn sub_round_ref_ref(
&self,
other: &Self,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_round_ref_ref( &self, other: &Self, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts two Floats, rounding the result with the specified rounding mode. Both
Floats are taken by reference. An Ordering is also returned, indicating whether the
rounded difference is less than, equal to, or greater than the exact difference. Although
NaNs are not comparable to any Float, whenever this function returns a NaN it also
returns Equal.
The precision of the output is the maximum of the precision of the inputs. See
RoundingMode for a description of the possible rounding modes.
$$ f(x,y,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$, where $p$ is the maximum precision of the inputs. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$, where $p$ is the maximum precision of the inputs.
If the output has a precision, it is the maximum of the precisions of the inputs.
Special cases:
- $f(\text{NaN},x,m)=f(x,\text{NaN},m)=f(\infty,\infty,m)=f(-\infty,-\infty,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $\infty$
- $f(x,-\infty,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $-\infty$
- $f(x,\infty,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,-0.0,m)=0.0$
- $f(-0.0,0.0,m)=-0.0$
- $f(0.0,0.0,m)=f(-0.0,-0.0,m)=0.0$ if $m$ is not
Floor - $f(0.0,0.0,m)=f(-0.0,-0.0,m)=-0.0$ if $m$ is
Floor - $f(x,x,m)=0.0$ if $x$ is finite and nonzero and $m$ is not
Floor - $f(x,x,m)=-0.0$ if $x$ is finite and nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using Float::sub_prec_round_ref_ref
instead. If you know you’ll be using the Nearest rounding mode, consider using -
instead.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the maximum precision of the inputs is not high enough to
represent the output.
§Examples
use core::f64::consts::{E, PI};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_round_ref_ref(&Float::from(-E), Floor);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_round_ref_ref(&Float::from(-E), Ceiling);
assert_eq!(sum.to_string(), "5.859874482048839");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_round_ref_ref(&Float::from(-E), Nearest);
assert_eq!(sum.to_string(), "5.859874482048838");
assert_eq!(o, Less);Sourcepub fn sub_rational_prec_round_ref_val(
&self,
other: Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_rational_prec_round_ref_val( &self, other: Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float is taken by reference and the Rational
by value. An Ordering is also returned, indicating whether the rounded difference is
less than, equal to, or greater than the exact difference. Although NaNs are not
comparable to any Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$
- $f(-\infty,x,p,m)=-\infty$
- $f(0.0,0,p,m)=0.0$
- $f(-0.0,0,p,m)=-0.0$
- $f(x,x,p,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,x,p,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::sub_rational_prec_ref_val
instead. If you know that your target precision is the precision of the Float input,
consider using Float::sub_rational_round_ref_val instead. If both of these things are
true, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact subtraction.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(sum.to_string(), "2.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(sum.to_string(), "2.9");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(sum.to_string(), "2.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(sum.to_string(), "2.808258");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(sum.to_string(), "2.808262");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_val(
Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(sum.to_string(), "2.808258");
assert_eq!(o, Less);Sourcepub fn sub_rational_prec_round_ref_ref(
&self,
other: &Rational,
prec: u64,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_rational_prec_round_ref_ref( &self, other: &Rational, prec: u64, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result to the specified precision and
with the specified rounding mode. The Float and the Rational are both taken by
reference. An Ordering is also returned, indicating whether the rounded difference is
less than, equal to, or greater than the exact difference. Although NaNs are not
comparable to any Float, whenever this function returns a NaN it also returns Equal.
See RoundingMode for a description of the possible rounding modes.
$$ f(x,y,p,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p,m)=\text{NaN}$
- $f(\infty,x,p,m)=\infty$
- $f(-\infty,x,p,m)=-\infty$
- $f(0.0,0,p,m)=0.0$
- $f(-0.0,0,p,m)=-0.0$
- $f(x,x,p,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,x,p,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,p,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,p,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,p,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,p,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,p,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you know you’ll be using Nearest, consider using Float::sub_rational_prec_ref_ref
instead. If you know that your target precision is the precision of the Float input,
consider using Float::sub_rational_round_ref_ref instead. If both of these things are
true, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Panics
Panics if rm is Exact but prec is too small for an exact subtraction.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Floor,
);
assert_eq!(sum.to_string(), "2.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Ceiling,
);
assert_eq!(sum.to_string(), "2.9");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
5,
Nearest,
);
assert_eq!(sum.to_string(), "2.8");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Floor,
);
assert_eq!(sum.to_string(), "2.808258");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Ceiling,
);
assert_eq!(sum.to_string(), "2.808262");
assert_eq!(o, Greater);
let (sum, o) = Float::from(PI).sub_rational_prec_round_ref_ref(
&Rational::from_unsigneds(1u8, 3),
20,
Nearest,
);
assert_eq!(sum.to_string(), "2.808258");
assert_eq!(o, Less);Sourcepub fn sub_rational_prec_ref_val(
&self,
other: Rational,
prec: u64,
) -> (Self, Ordering)
pub fn sub_rational_prec_ref_val( &self, other: Rational, prec: u64, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float is taken by reference and the Rational by value. An
Ordering is also returned, indicating whether the rounded difference is less than, equal
to, or greater than the exact difference. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
If the difference is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$
- $f(-\infty,x,p)=-\infty$
- $f(0.0,0,p)=0.0$
- $f(-0.0,0,p)=-0.0$
- $f(x,x,p)=0.0$ if $x$ is nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::sub_rational_prec_round_ref_val instead. If you know that your target precision
is the precision of the Float input, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_rational_prec_ref_val(Rational::exact_from(1.5), 5);
assert_eq!(sum.to_string(), "1.62");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_ref_val(Rational::exact_from(1.5), 20);
assert_eq!(sum.to_string(), "1.641592");
assert_eq!(o, Less);Sourcepub fn sub_rational_prec_ref_ref(
&self,
other: &Rational,
prec: u64,
) -> (Self, Ordering)
pub fn sub_rational_prec_ref_ref( &self, other: &Rational, prec: u64, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result to the nearest value of the
specified precision. The Float and the Rational are both are taken by reference. An
Ordering is also returned, indicating whether the rounded difference is less than, equal
to, or greater than the exact difference. Although NaNs are not comparable to any
Float, whenever this function returns a NaN it also returns Equal.
If the difference is equidistant from two Floats with the specified precision, the
Float with fewer 1s in its binary expansion is chosen. See RoundingMode for a
description of the Nearest rounding mode.
$$ f(x,y,p) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$.
If the output has a precision, it is prec.
Special cases:
- $f(\text{NaN},x,p)=\text{NaN}$
- $f(\infty,x,p)=\infty$
- $f(-\infty,x,p)=-\infty$
- $f(0.0,0,p)=0.0$
- $f(-0.0,0,p)=-0.0$
- $f(x,x,p)=0.0$ if $x$ is nonzero
Overflow and underflow:
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $\infty$ is returned instead.
- If $f(x,y,p)\geq 2^{2^{30}-1}$, $-\infty$ is returned instead.
- If $0<f(x,y,p)\leq2^{-2^{30}-1}$, $0.0$ is returned instead.
- If $2^{-2^{30}-1}<f(x,y,p)<2^{-2^{30}}$, $2^{-2^{30}}$ is returned instead.
- If $-2^{-2^{30}-1}\leq f(x,y,p)<0$, $-0.0$ is returned instead.
- If $-2^{-2^{30}}<f(x,y,p)<-2^{-2^{30}-1}$, $-2^{-2^{30}}$ is returned instead.
If you want to use a rounding mode other than Nearest, consider using
Float::sub_rational_prec_round_ref_ref instead. If you know that your target precision
is the precision of the Float input, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(other.significant_bits(), prec).
§Examples
use core::f64::consts::PI;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) = Float::from(PI).sub_rational_prec_ref_ref(&Rational::exact_from(1.5), 5);
assert_eq!(sum.to_string(), "1.62");
assert_eq!(o, Less);
let (sum, o) = Float::from(PI).sub_rational_prec_ref_ref(&Rational::exact_from(1.5), 20);
assert_eq!(sum.to_string(), "1.641592");
assert_eq!(o, Less);Sourcepub fn sub_rational_round_ref_val(
&self,
other: Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_rational_round_ref_val( &self, other: Rational, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result with the specified rounding
mode. The Float is taken by reference and the Rational by value. An Ordering is
also returned, indicating whether the rounded difference is less than, equal to, or greater
than the exact difference. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0,m)=0.0$
- $f(-0.0,0,m)=-0.0$
- $f(x,0,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(0.0,x,m)=f(-0.0,x,m)=-x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,x,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,x,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::sub_rational_prec_round_ref_val instead. If you know you’ll be using the
Nearest rounding mode, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) =
Float::from(PI).sub_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(sum.to_string(), "2.808259320256457");
assert_eq!(o, Less);
let (sum, o) =
Float::from(PI).sub_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(sum.to_string(), "2.808259320256461");
assert_eq!(o, Greater);
let (sum, o) =
Float::from(PI).sub_rational_round_ref_val(Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(sum.to_string(), "2.808259320256461");
assert_eq!(o, Greater);Sourcepub fn sub_rational_round_ref_ref(
&self,
other: &Rational,
rm: RoundingMode,
) -> (Self, Ordering)
pub fn sub_rational_round_ref_ref( &self, other: &Rational, rm: RoundingMode, ) -> (Self, Ordering)
Subtracts a Float by a Rational, rounding the result with the specified rounding
mode. The Float and the Rational are both are taken by reference. An Ordering is
also returned, indicating whether the rounded difference is less than, equal to, or greater
than the exact difference. Although NaNs are not comparable to any Float, whenever
this function returns a NaN it also returns Equal.
The precision of the output is the precision of the Float input. See RoundingMode
for a description of the possible rounding modes.
$$ f(x,y,m) = x-y+\varepsilon. $$
- If $x-y$ is infinite, zero, or
NaN, $\varepsilon$ may be ignored or assumed to be 0. - If $x-y$ is finite and nonzero, and $m$ is not
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p+1}$, where $p$ is the precision of the inputFloat. - If $x-y$ is finite and nonzero, and $m$ is
Nearest, then $|\varepsilon| < 2^{\lfloor\log_2 |x-y|\rfloor-p}$, where $p$ is the precision of the inputFloat.
If the output has a precision, it is the precision of the Float input.
Special cases:
- $f(\text{NaN},x,m)=\text{NaN}$
- $f(\infty,x,m)=\infty$ if $x$ is not NaN or $-\infty$
- $f(-\infty,x,m)=-\infty$ if $x$ is not NaN or $\infty$
- $f(0.0,0,m)=0.0$
- $f(-0.0,0,m)=-0.0$
- $f(x,0,m)=x$ if $x$ is not NaN and $x$ is nonzero
- $f(0.0,x,m)=f(-0.0,x,m)=-x$ if $x$ is not NaN and $x$ is nonzero
- $f(x,x,m)=0.0$ if $x$ is nonzero and $m$ is not
Floor - $f(x,x,m)=-0.0$ if $x$ is nonzero and $m$ is
Floor
Overflow and underflow:
- If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Ceiling,Up, orNearest, $\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
FloororDown, $(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
Floor,Up, orNearest, $-\infty$ is returned instead. - If $f(x,y,m)\geq 2^{2^{30}-1}$ and $m$ is
CeilingorDown, $-(1-(1/2)^p)2^{2^{30}-1}$ is returned instead, wherepis the precision of the input. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
FloororDown, $0.0$ is returned instead. - If $0<f(x,y,m)<2^{-2^{30}}$, and $m$ is
CeilingorUp, $2^{-2^{30}}$ is returned instead. - If $0<f(x,y,m)\leq2^{-2^{30}-1}$, and $m$ is
Nearest, $0.0$ is returned instead. - If $2^{-2^{30}-1}<f(x,y,m)<2^{-2^{30}}$, and $m$ is
Nearest, $2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
CeilingorDown, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<0$, and $m$ is
FloororUp, $-2^{-2^{30}}$ is returned instead. - If $-2^{-2^{30}-1}\leq f(x,y,m)<0$, and $m$ is
Nearest, $-0.0$ is returned instead. - If $-2^{-2^{30}}<f(x,y,m)<-2^{-2^{30}-1}$, and $m$ is
Nearest, $-2^{-2^{30}}$ is returned instead.
If you want to specify an output precision, consider using
Float::sub_rational_prec_round_ref_ref instead. If you know you’ll be using the
Nearest rounding mode, consider using - instead.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Panics
Panics if rm is Exact but the precision of the Float input is not high enough to
represent the output.
§Examples
use core::f64::consts::PI;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_float::Float;
use malachite_q::Rational;
use std::cmp::Ordering::*;
let (sum, o) =
Float::from(PI).sub_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Floor);
assert_eq!(sum.to_string(), "2.808259320256457");
assert_eq!(o, Less);
let (sum, o) =
Float::from(PI).sub_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Ceiling);
assert_eq!(sum.to_string(), "2.808259320256461");
assert_eq!(o, Greater);
let (sum, o) =
Float::from(PI).sub_rational_round_ref_ref(&Rational::from_unsigneds(1u8, 3), Nearest);
assert_eq!(sum.to_string(), "2.808259320256461");
assert_eq!(o, Greater);Sourcepub fn is_finite(&self) -> bool
pub fn is_finite(&self) -> bool
Determines whether a Float is finite.
NaN is not finite.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.is_finite(), false);
assert_eq!(Float::INFINITY.is_finite(), false);
assert_eq!(Float::ONE.is_finite(), true);Sourcepub fn is_infinite(&self) -> bool
pub fn is_infinite(&self) -> bool
Determines whether a Float is infinite.
NaN is not infinite.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.is_infinite(), false);
assert_eq!(Float::INFINITY.is_infinite(), true);
assert_eq!(Float::ONE.is_infinite(), false);Sourcepub fn is_positive_zero(&self) -> bool
pub fn is_positive_zero(&self) -> bool
Determines whether a Float is positive zero.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_positive_zero(), false);
assert_eq!(Float::INFINITY.is_positive_zero(), false);
assert_eq!(Float::ONE.is_positive_zero(), false);
assert_eq!(Float::ZERO.is_positive_zero(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_positive_zero(), false);Sourcepub fn is_negative_zero(&self) -> bool
pub fn is_negative_zero(&self) -> bool
Determines whether a Float is negative zero.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_negative_zero(), false);
assert_eq!(Float::INFINITY.is_negative_zero(), false);
assert_eq!(Float::ONE.is_negative_zero(), false);
assert_eq!(Float::ZERO.is_negative_zero(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_negative_zero(), true);Sourcepub fn is_zero(&self) -> bool
pub fn is_zero(&self) -> bool
Determines whether a Float is zero (positive or negative).
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_zero(), false);
assert_eq!(Float::INFINITY.is_zero(), false);
assert_eq!(Float::ONE.is_zero(), false);
assert_eq!(Float::ZERO.is_zero(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_zero(), true);Sourcepub fn is_normal(&self) -> bool
pub fn is_normal(&self) -> bool
Determines whether a Float is normal, that is, finite and nonzero.
There is no notion of subnormal Floats.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.is_normal(), false);
assert_eq!(Float::INFINITY.is_normal(), false);
assert_eq!(Float::ZERO.is_normal(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_normal(), false);
assert_eq!(Float::ONE.is_normal(), true);Sourcepub fn is_sign_positive(&self) -> bool
pub fn is_sign_positive(&self) -> bool
Determines whether a Float’s sign is positive.
A NaN has no sign, so this function returns false when given a NaN.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero,
};
use malachite_float::Float;
assert_eq!(Float::NAN.is_sign_positive(), false);
assert_eq!(Float::INFINITY.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_INFINITY.is_sign_positive(), false);
assert_eq!(Float::ZERO.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_ZERO.is_sign_positive(), false);
assert_eq!(Float::ONE.is_sign_positive(), true);
assert_eq!(Float::NEGATIVE_ONE.is_sign_positive(), false);Sourcepub fn is_sign_negative(&self) -> bool
pub fn is_sign_negative(&self) -> bool
Determines whether a Float’s sign is negative.
A NaN has no sign, so this function returns false when given a NaN.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero,
};
use malachite_float::Float;
assert_eq!(Float::NAN.is_sign_negative(), false);
assert_eq!(Float::INFINITY.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_INFINITY.is_sign_negative(), true);
assert_eq!(Float::ZERO.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_ZERO.is_sign_negative(), true);
assert_eq!(Float::ONE.is_sign_negative(), false);
assert_eq!(Float::NEGATIVE_ONE.is_sign_negative(), true);Sourcepub fn classify(&self) -> FpCategory
pub fn classify(&self) -> FpCategory
Classifies a Float into one of several categories.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, Zero,
};
use malachite_float::Float;
use std::num::FpCategory;
assert_eq!(Float::NAN.classify(), FpCategory::Nan);
assert_eq!(Float::INFINITY.classify(), FpCategory::Infinite);
assert_eq!(Float::NEGATIVE_INFINITY.classify(), FpCategory::Infinite);
assert_eq!(Float::ZERO.classify(), FpCategory::Zero);
assert_eq!(Float::NEGATIVE_ZERO.classify(), FpCategory::Zero);
assert_eq!(Float::ONE.classify(), FpCategory::Normal);
assert_eq!(Float::NEGATIVE_ONE.classify(), FpCategory::Normal);Sourcepub fn to_non_nan(&self) -> Option<Self>
pub fn to_non_nan(&self) -> Option<Self>
Turns a NaN into a None and wraps any non-NaN Float with a Some. The Float is
taken by reference.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.to_non_nan(), None);
assert_eq!(Float::INFINITY.to_non_nan(), Some(Float::INFINITY));
assert_eq!(Float::ZERO.to_non_nan(), Some(Float::ZERO));
assert_eq!(
Float::NEGATIVE_ZERO.to_non_nan(),
Some(Float::NEGATIVE_ZERO)
);
assert_eq!(Float::ONE.to_non_nan(), Some(Float::ONE));Sourcepub fn to_finite(&self) -> Option<Self>
pub fn to_finite(&self) -> Option<Self>
Turns any Float that’s NaN or infinite into a None and wraps any finite Float with
a Some. The Float is taken by reference.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeZero, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.to_finite(), None);
assert_eq!(Float::INFINITY.to_finite(), None);
assert_eq!(Float::ZERO.to_finite(), Some(Float::ZERO));
assert_eq!(Float::NEGATIVE_ZERO.to_finite(), Some(Float::NEGATIVE_ZERO));
assert_eq!(Float::ONE.to_finite(), Some(Float::ONE));Sourcepub fn complexity(&self) -> u64
pub fn complexity(&self) -> u64
Determines a Float’s complexity. The complexity is defined as follows:
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = 1, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \max(|\lfloor \log_2 x\rfloor|, p), $$
where $p$ is the precision of $x$.
Informally, the complexity is proportional to the number of characters you would need to
write the Float out without using exponents.
See also the Float implementation of SignificantBits.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{NaN, One};
use malachite_float::Float;
assert_eq!(Float::NAN.complexity(), 1);
assert_eq!(Float::ONE.complexity(), 1);
assert_eq!(Float::one_prec(100).complexity(), 100);
assert_eq!(Float::from(std::f64::consts::PI).complexity(), 50);
assert_eq!(Float::power_of_2(100u64).complexity(), 100);
assert_eq!(Float::power_of_2(-100i64).complexity(), 100);pub const MIN_POSITIVE: Self
Sourcepub fn to_significand(&self) -> Option<Natural>
pub fn to_significand(&self) -> Option<Natural>
Gets the significand of a Float, taking the Float by value.
The significand is the smallest positive integer which is some power of 2 times the
Float, and whose number of significant bits is a multiple of the limb width. If the
Float is NaN, infinite, or zero, then None is returned.
§Worst-case complexity
Constant time and additional memory.
§Examples
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::arithmetic::traits::PowerOf2;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::basic::traits::One;
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_float::Float;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_nz::natural::Natural;
assert_eq!(Float::NAN.to_significand(), None);
assert_eq!(Float::INFINITY.to_significand(), None);
assert_eq!(Float::ZERO.to_significand(), None);
#[cfg(not(feature = "32_bit_limbs"))]
{
assert_eq!(Float::ONE.to_significand(), Some(Natural::power_of_2(63)));
assert_eq!(
Float::from(std::f64::consts::PI).to_significand().unwrap(),
14488038916154245120u64
);
}Sourcepub fn significand_ref(&self) -> Option<&Natural>
pub fn significand_ref(&self) -> Option<&Natural>
Returns a reference to the significand of a Float.
The significand is the smallest positive integer which is some power of 2 times the
Float, and whose number of significant bits is a multiple of the limb width. If the
Float is NaN, infinite, or zero, then None is returned.
§Worst-case complexity
Constant time and additional memory.
§Examples
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::arithmetic::traits::PowerOf2;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_base::num::basic::traits::One;
use malachite_base::num::basic::traits::{Infinity, NaN, Zero};
use malachite_float::Float;
#[cfg(not(feature = "32_bit_limbs"))]
use malachite_nz::natural::Natural;
assert_eq!(Float::NAN.significand_ref(), None);
assert_eq!(Float::INFINITY.significand_ref(), None);
assert_eq!(Float::ZERO.significand_ref(), None);
#[cfg(not(feature = "32_bit_limbs"))]
{
assert_eq!(
*Float::ONE.significand_ref().unwrap(),
Natural::power_of_2(63)
);
assert_eq!(
*Float::from(std::f64::consts::PI).significand_ref().unwrap(),
14488038916154245120u64
);
}Sourcepub fn get_exponent(&self) -> Option<i32>
pub fn get_exponent(&self) -> Option<i32>
Returns a Float’s exponent.
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = \text{None}, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \operatorname{Some}(\lfloor \log_2 x \rfloor + 1). $$
The output is in the range $[-(2^{30}-1), 2^{30}-1]$.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.get_exponent(), None);
assert_eq!(Float::INFINITY.get_exponent(), None);
assert_eq!(Float::ZERO.get_exponent(), None);
assert_eq!(Float::ONE.get_exponent(), Some(1));
assert_eq!(Float::from(std::f64::consts::PI).get_exponent(), Some(2));
assert_eq!(Float::power_of_2(100u64).get_exponent(), Some(101));
assert_eq!(Float::power_of_2(-100i64).get_exponent(), Some(-99));Sourcepub fn get_prec(&self) -> Option<u64>
pub fn get_prec(&self) -> Option<u64>
Returns a Float’s precision. The precision is a positive integer denoting how many of
the Float’s bits are significant.
Only Floats that are finite and nonzero have a precision. For other Floats, None
is returned.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.get_prec(), None);
assert_eq!(Float::INFINITY.get_prec(), None);
assert_eq!(Float::ZERO.get_prec(), None);
assert_eq!(Float::ONE.get_prec(), Some(1));
assert_eq!(Float::one_prec(100).get_prec(), Some(100));
assert_eq!(Float::from(std::f64::consts::PI).get_prec(), Some(50));Sourcepub fn get_min_prec(&self) -> Option<u64>
pub fn get_min_prec(&self) -> Option<u64>
Returns the minimum precision necessary to represent the given Float’s value.
For example, Float:one_prec(100) has a precision of 100, but its minimum precision is 1,
because that’s all that’s necessary to represent the value 1.
The minimum precision is always less than or equal to the actual precision.
Only Floats that are finite and nonzero have a minimum precision. For other Floats,
None is returned.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{Infinity, NaN, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.get_min_prec(), None);
assert_eq!(Float::INFINITY.get_min_prec(), None);
assert_eq!(Float::ZERO.get_min_prec(), None);
assert_eq!(Float::ONE.get_min_prec(), Some(1));
assert_eq!(Float::one_prec(100).get_min_prec(), Some(1));
assert_eq!(Float::from(std::f64::consts::PI).get_min_prec(), Some(50));Sourcepub fn ulp(&self) -> Option<Self>
pub fn ulp(&self) -> Option<Self>
Gets a Float’s ulp (unit in last place, or unit of least precision).
If the Float is positive, its ulp is the distance to the next-largest Float with the
same precision; if it is negative, the next-smallest. (This definition works even if the
Float is the largest in its binade. If the Float is the largest in its binade and
has the maximum exponent, we can define its ulp to be the distance to the next-smallest
Float with the same precision if positive, and to the next-largest Float with the
same precision if negative.)
If the Float is NaN, infinite, or zero, then None is returned.
This function does not overflow or underflow, technically. But it is possible that a
Float’s ulp is too small to represent, for example if the Float has the minimum
exponent and its precision is greater than 1, or if the precision is extremely large in
general. In such cases, None is returned.
$$ f(\text{NaN}) = f(\pm\infty) = f(\pm 0.0) = \text{None}, $$
and, if $x$ is finite and nonzero,
$$ f(x) = \operatorname{Some}(2^{\lfloor \log_2 x \rfloor-p+1}), $$ where $p$ is the precision of $x$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
use malachite_base::num::arithmetic::traits::PowerOf2;
use malachite_base::num::basic::traits::{Infinity, NaN, NegativeOne, One, Zero};
use malachite_float::Float;
assert_eq!(Float::NAN.ulp(), None);
assert_eq!(Float::INFINITY.ulp(), None);
assert_eq!(Float::ZERO.ulp(), None);
let s = Float::ONE.ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0"));
let s = Float::one_prec(100).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("2.0e-30"));
let s = Float::from(std::f64::consts::PI)
.ulp()
.map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("4.0e-15"));
let s = Float::power_of_2(100u64).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0e30"));
let s = Float::power_of_2(-100i64).ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("8.0e-31"));
let s = Float::NEGATIVE_ONE.ulp().map(|x| x.to_string());
assert_eq!(s.as_ref().map(|s| s.as_str()), Some("1.0"));Sourcepub fn sci_mantissa_and_exponent_round<T: PrimitiveFloat>(
&self,
rm: RoundingMode,
) -> Option<(T, i32, Ordering)>
pub fn sci_mantissa_and_exponent_round<T: PrimitiveFloat>( &self, rm: RoundingMode, ) -> Option<(T, i32, Ordering)>
Returns a Float’s scientific mantissa and exponent, rounding according to the specified
rounding mode. An Ordering is also returned, indicating whether the mantissa and
exponent represent a value that is less than, equal to, or greater than the original value.
When $x$ is positive, we can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is
a rational number with $1 \leq m_s < 2$. We represent the rational mantissa as a float. The
conversion might not be exact, so we round to the nearest float using the provided rounding
mode. If the rounding mode is Exact but the conversion is not exact, None is returned.
$$
f(x, r) \approx \left (\frac{x}{2^{\lfloor \log_2 x \rfloor}},
\lfloor \log_2 x \rfloor\right ).
$$
This function does not overflow or underflow. The returned exponent is always in the range
$[-2^{30}, 2^{30}-1]$. Notice that although a Float’s maximum scientific exponent is
$2^{30}-2$, this function may return an exponent one larger than this limit due to rounding.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::ExactFrom;
use malachite_base::num::float::NiceFloat;
use malachite_base::rounding_modes::RoundingMode::{self, *};
use malachite_float::Float;
use malachite_nz::natural::Natural;
use std::cmp::Ordering::{self, *};
let test = |x: Float, rm: RoundingMode, out: Option<(f32, i32, Ordering)>| {
assert_eq!(
x.sci_mantissa_and_exponent_round(rm)
.map(|(m, e, o)| (NiceFloat(m), e, o)),
out.map(|(m, e, o)| (NiceFloat(m), e, o))
);
};
test(Float::from(3u32), Floor, Some((1.5, 1, Equal)));
test(Float::from(3u32), Down, Some((1.5, 1, Equal)));
test(Float::from(3u32), Ceiling, Some((1.5, 1, Equal)));
test(Float::from(3u32), Up, Some((1.5, 1, Equal)));
test(Float::from(3u32), Nearest, Some((1.5, 1, Equal)));
test(Float::from(3u32), Exact, Some((1.5, 1, Equal)));
let x = Float::from(std::f64::consts::PI);
test(x.clone(), Floor, Some((1.5707963, 1, Less)));
test(x.clone(), Down, Some((1.5707963, 1, Less)));
test(x.clone(), Ceiling, Some((1.5707964, 1, Greater)));
test(x.clone(), Up, Some((1.5707964, 1, Greater)));
test(x.clone(), Nearest, Some((1.5707964, 1, Greater)));
test(x.clone(), Exact, None);
test(
Float::from(1000000000u32),
Nearest,
Some((1.8626451, 29, Equal)),
);
test(
Float::exact_from(Natural::from(10u32).pow(52)),
Nearest,
Some((1.670478, 172, Greater)),
);
test(Float::exact_from(Natural::from(10u32).pow(52)), Exact, None);pub const MAX_EXPONENT: i32 = 1_073_741_823i32
pub const MIN_EXPONENT: i32 = -1_073_741_823i32
Trait Implementations§
Source§impl Clone for ComparableFloat
impl Clone for ComparableFloat
Source§fn clone(&self) -> ComparableFloat
fn clone(&self) -> ComparableFloat
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for ComparableFloat
impl Debug for ComparableFloat
Source§impl Deref for ComparableFloat
impl Deref for ComparableFloat
Source§impl Display for ComparableFloat
impl Display for ComparableFloat
Source§impl EqAbs for ComparableFloat
impl EqAbs for ComparableFloat
Source§fn eq_abs(&self, other: &Self) -> bool
fn eq_abs(&self, other: &Self) -> bool
Compares the absolute values of two ComparableFloats for equality.
This implementation ignores the IEEE 754 standard in favor of an equality operation that
respects the expected properties of symmetry, reflexivity, and transitivity. Using
ComparableFloat, NaNs are equal to themselves. There is a single, unique NaN;
there’s no concept of signalling NaNs. ComparableFloats with different precisions are
unequal.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Examples
use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat(Float::NAN), ComparableFloat(Float::NAN));
assert_eq!(ComparableFloat(Float::ZERO), ComparableFloat(Float::ZERO));
assert_eq!(
ComparableFloat(Float::NEGATIVE_ZERO),
ComparableFloat(Float::NEGATIVE_ZERO)
);
assert_ne!(
ComparableFloat(Float::ZERO),
ComparableFloat(Float::NEGATIVE_ZERO)
);
assert_eq!(ComparableFloat(Float::ONE), ComparableFloat(Float::ONE));
assert_ne!(ComparableFloat(Float::ONE), ComparableFloat(Float::TWO));
assert_ne!(
ComparableFloat(Float::ONE),
ComparableFloat(Float::one_prec(100))
);Source§impl Hash for ComparableFloat
impl Hash for ComparableFloat
Source§fn hash<H: Hasher>(&self, state: &mut H)
fn hash<H: Hasher>(&self, state: &mut H)
Computes a hash of a ComparableFloat.
The hash is compatible with ComparableFloat equality: all NaNs hash to the same value.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits().
Source§impl LowerHex for ComparableFloat
impl LowerHex for ComparableFloat
Source§impl Ord for ComparableFloat
impl Ord for ComparableFloat
Source§fn cmp(&self, other: &Self) -> Ordering
fn cmp(&self, other: &Self) -> Ordering
Compares two ComparableFloats.
This implementation does not follow the IEEE 754 standard. This is how ComparableFloats
are ordered, least to greatest:
- $-\infty$
- Negative nonzero finite floats
- Negative zero
- NaN
- Positive zero
- Positive nonzero finite floats
- $\infty$
When comparing two finite floats with the same numeric value but different precisions, the one with greater precision is ordered to be further from zero.
For different comparison behavior that follows the IEEE 754 standard, consider just using
Float.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero,
};
use malachite_float::{ComparableFloat, Float};
use std::cmp::Ordering::*;
assert_eq!(
ComparableFloat(Float::NAN).partial_cmp(&ComparableFloat(Float::NAN)),
Some(Equal)
);
assert!(ComparableFloat(Float::ZERO) > ComparableFloat(Float::NEGATIVE_ZERO));
assert!(ComparableFloat(Float::ONE) < ComparableFloat(Float::one_prec(100)));
assert!(ComparableFloat(Float::INFINITY) > ComparableFloat(Float::ONE));
assert!(ComparableFloat(Float::NEGATIVE_INFINITY) < ComparableFloat(Float::ONE));
assert!(ComparableFloat(Float::ONE_HALF) < ComparableFloat(Float::ONE));
assert!(ComparableFloat(Float::ONE_HALF) > ComparableFloat(Float::NEGATIVE_ONE));1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl OrdAbs for ComparableFloat
impl OrdAbs for ComparableFloat
Source§fn cmp_abs(&self, other: &Self) -> Ordering
fn cmp_abs(&self, other: &Self) -> Ordering
Compares the absolute values of two ComparableFloats.
This implementation does not follow the IEEE 754 standard. This is how ComparableFloats
are ordered by absolute value, from least to greatest:
- NaN
- Positive and negative zero
- Nonzero finite floats
- $\infty$ and $-\infty$
For different comparison behavior that follows the IEEE 754 standard, consider just using
Float.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Examples
use malachite_base::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, Zero,
};
use malachite_base::num::comparison::traits::PartialOrdAbs;
use malachite_float::{ComparableFloat, Float};
use std::cmp::Ordering::*;
assert_eq!(
ComparableFloat(Float::NAN).partial_cmp_abs(&ComparableFloat(Float::NAN)),
Some(Equal)
);
assert_eq!(
ComparableFloat(Float::ZERO).partial_cmp_abs(&ComparableFloat(Float::NEGATIVE_ZERO)),
Some(Equal)
);
assert!(ComparableFloat(Float::ONE).lt_abs(&ComparableFloat(Float::one_prec(100))));
assert!(ComparableFloat(Float::INFINITY).gt_abs(&ComparableFloat(Float::ONE)));
assert!(ComparableFloat(Float::NEGATIVE_INFINITY).gt_abs(&ComparableFloat(Float::ONE)));
assert!(ComparableFloat(Float::ONE_HALF).lt_abs(&ComparableFloat(Float::ONE)));
assert!(ComparableFloat(Float::ONE_HALF).lt_abs(&ComparableFloat(Float::NEGATIVE_ONE)));Source§impl PartialEq for ComparableFloat
impl PartialEq for ComparableFloat
Source§fn eq(&self, other: &Self) -> bool
fn eq(&self, other: &Self) -> bool
Compares two ComparableFloats for equality.
This implementation ignores the IEEE 754 standard in favor of an equality operation that
respects the expected properties of symmetry, reflexivity, and transitivity. Using
ComparableFloat, NaNs are equal to themselves. There is a single, unique NaN;
there’s no concept of signalling NaNs. Positive and negative zero are two distinct values,
not equal to each other. ComparableFloats with different precisions are unequal.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits()).
§Examples
use malachite_base::num::basic::traits::{NaN, NegativeZero, One, Two, Zero};
use malachite_float::{ComparableFloat, Float};
assert_eq!(ComparableFloat(Float::NAN), ComparableFloat(Float::NAN));
assert_eq!(ComparableFloat(Float::ZERO), ComparableFloat(Float::ZERO));
assert_eq!(
ComparableFloat(Float::NEGATIVE_ZERO),
ComparableFloat(Float::NEGATIVE_ZERO)
);
assert_ne!(
ComparableFloat(Float::ZERO),
ComparableFloat(Float::NEGATIVE_ZERO)
);
assert_eq!(ComparableFloat(Float::ONE), ComparableFloat(Float::ONE));
assert_ne!(ComparableFloat(Float::ONE), ComparableFloat(Float::TWO));
assert_ne!(
ComparableFloat(Float::ONE),
ComparableFloat(Float::one_prec(100))
);Source§impl PartialOrd for ComparableFloat
impl PartialOrd for ComparableFloat
Source§impl PartialOrdAbs for ComparableFloat
impl PartialOrdAbs for ComparableFloat
Source§fn partial_cmp_abs(&self, other: &Self) -> Option<Ordering>
fn partial_cmp_abs(&self, other: &Self) -> Option<Ordering>
Compares the absolute values of two ComparableFloatRefs.
See the documentation for the Ord implementation.
Source§fn lt_abs(&self, other: &Rhs) -> bool
fn lt_abs(&self, other: &Rhs) -> bool
Source§fn le_abs(&self, other: &Rhs) -> bool
fn le_abs(&self, other: &Rhs) -> bool
impl Eq for ComparableFloat
Auto Trait Implementations§
impl Freeze for ComparableFloat
impl RefUnwindSafe for ComparableFloat
impl Send for ComparableFloat
impl Sync for ComparableFloat
impl Unpin for ComparableFloat
impl UnwindSafe for ComparableFloat
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more