pub enum RoundingMode {
Down,
Up,
Floor,
Ceiling,
Nearest,
Exact,
}
Expand description
An enum that specifies how a value should be rounded.
A RoundingMode
can often be specified when a function conceptually returns a value of one
type, but must be rounded to another type. The most common case is a conceptually real-valued
function whose result must be rounded to an integer, like
div_round
.
§Examples
Here are some examples of how floating-point values would be rounded to integer values using the
different RoundingMode
s.
x | Floor | Ceiling | Down | Up | Nearest | Exact |
---|---|---|---|---|---|---|
3.0 | 3 | 3 | 3 | 3 | 3 | 3 |
3.2 | 3 | 4 | 3 | 4 | 3 | panic!() |
3.8 | 3 | 4 | 3 | 4 | 4 | panic!() |
3.5 | 3 | 4 | 3 | 4 | 4 | panic!() |
4.5 | 4 | 5 | 4 | 5 | 4 | panic!() |
-3.2 | -4 | -3 | -3 | -4 | -3 | panic!() |
-3.8 | -4 | -3 | -3 | -4 | -4 | panic!() |
-3.5 | -4 | -3 | -3 | -4 | -4 | panic!() |
-4.5 | -5 | -4 | -4 | -5 | -4 | panic!() |
Sometimes a RoundingMode
is used in an unusual context, such as rounding an integer to a
floating-point number, in which case further explanation of its behavior is provided at the
usage site.
A RoundingMode
takes up 1 byte of space.
Variants§
Down
Applies the function $x \mapsto \operatorname{sgn}(x) \lfloor |x| \rfloor$. In other words, the value is rounded towards $0$.
Up
Applies the function $x \mapsto \operatorname{sgn}(x) \lceil |x| \rceil$. In other words, the value is rounded away from $0$.
Floor
Applies the floor function: $x \mapsto \lfloor x \rfloor$. In other words, the value is rounded towards $-\infty$.
Ceiling
Applies the ceiling function: $x \mapsto \lceil x \rceil$. In other words, the value is rounded towards $\infty$.
Nearest
Applies the function $$ x \mapsto \begin{cases} \lfloor x \rfloor & x - \lfloor x \rfloor < \frac{1}{2} \\ \lceil x \rceil & x - \lfloor x \rfloor > \frac{1}{2} \\ \lfloor x \rfloor & x - \lfloor x \rfloor = \frac{1}{2} \ \text{and} \ \lfloor x \rfloor \ \text{is even} \\ \lceil x \rceil & x - \lfloor x \rfloor = \frac{1}{2} \ \text{and} \ \lfloor x \rfloor \ \text{is odd.} \end{cases} $$ In other words, it rounds to the nearest integer, and when there’s a tie, it rounds to the nearest even integer. This is also called bankers’ rounding and is often used as a default.
Exact
Panics if the value is not already rounded.
Trait Implementations§
source§impl Clone for RoundingMode
impl Clone for RoundingMode
source§fn clone(&self) -> RoundingMode
fn clone(&self) -> RoundingMode
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for RoundingMode
impl Debug for RoundingMode
source§impl Display for RoundingMode
impl Display for RoundingMode
source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Converts a RoundingMode
to a [String
].
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::rounding_modes::RoundingMode::*;
assert_eq!(Down.to_string(), "Down");
assert_eq!(Up.to_string(), "Up");
assert_eq!(Floor.to_string(), "Floor");
assert_eq!(Ceiling.to_string(), "Ceiling");
assert_eq!(Nearest.to_string(), "Nearest");
assert_eq!(Exact.to_string(), "Exact");
source§impl FromStr for RoundingMode
impl FromStr for RoundingMode
source§fn from_str(src: &str) -> Result<RoundingMode, String>
fn from_str(src: &str) -> Result<RoundingMode, String>
Converts a string to a RoundingMode
.
If the string does not represent a valid RoundingMode
, an Err
is returned with the
unparseable string.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ = src.len()
.
The worst case occurs when the input string is invalid and must be copied into an Err
.
§Examples
use malachite_base::rounding_modes::RoundingMode::{self, *};
use std::str::FromStr;
assert_eq!(RoundingMode::from_str("Down"), Ok(Down));
assert_eq!(RoundingMode::from_str("Up"), Ok(Up));
assert_eq!(RoundingMode::from_str("Floor"), Ok(Floor));
assert_eq!(RoundingMode::from_str("Ceiling"), Ok(Ceiling));
assert_eq!(RoundingMode::from_str("Nearest"), Ok(Nearest));
assert_eq!(RoundingMode::from_str("Exact"), Ok(Exact));
assert_eq!(RoundingMode::from_str("abc"), Err("abc".to_string()));
source§impl Hash for RoundingMode
impl Hash for RoundingMode
source§impl Named for RoundingMode
impl Named for RoundingMode
source§impl Neg for RoundingMode
impl Neg for RoundingMode
Returns the negative of a RoundingMode
.
The negative is defined so that if a RoundingMode
$m$ is used to round the result of an odd
function $f$, then $f(x, -m) = -f(-x, m)$. Floor
and Ceiling
are swapped, and the other
modes are unchanged.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::rounding_modes::RoundingMode::*;
assert_eq!(-Down, Down);
assert_eq!(-Up, Up);
assert_eq!(-Floor, Ceiling);
assert_eq!(-Ceiling, Floor);
assert_eq!(-Nearest, Nearest);
assert_eq!(-Exact, Exact);
source§type Output = RoundingMode
type Output = RoundingMode
-
operator.source§fn neg(self) -> RoundingMode
fn neg(self) -> RoundingMode
-
operation. Read moresource§impl NegAssign for RoundingMode
impl NegAssign for RoundingMode
source§fn neg_assign(&mut self)
fn neg_assign(&mut self)
Replaces a RoundingMode
with its negative.
The negative is defined so that if a RoundingMode
$m$ is used to round the result of an
odd function $f$, then $f(x, -m) = -f(-x, m)$. Floor
and Ceiling
are swapped, and the
other modes are unchanged.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::NegAssign;
use malachite_base::rounding_modes::RoundingMode::*;
let mut rm = Down;
rm.neg_assign();
assert_eq!(rm, Down);
let mut rm = Floor;
rm.neg_assign();
assert_eq!(rm, Ceiling);
source§impl Ord for RoundingMode
impl Ord for RoundingMode
source§fn cmp(&self, other: &RoundingMode) -> Ordering
fn cmp(&self, other: &RoundingMode) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
source§impl PartialEq for RoundingMode
impl PartialEq for RoundingMode
source§impl PartialOrd for RoundingMode
impl PartialOrd for RoundingMode
impl Copy for RoundingMode
impl Eq for RoundingMode
impl StructuralPartialEq for RoundingMode
Auto Trait Implementations§
impl Freeze for RoundingMode
impl RefUnwindSafe for RoundingMode
impl Send for RoundingMode
impl Sync for RoundingMode
impl Unpin for RoundingMode
impl UnwindSafe for RoundingMode
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more