pub trait PrimitiveFloat: 'static + Abs<Output = Self> + AbsAssign + Add<Output = Self> + AddAssign<Self> + AddMul<Output = Self> + AddMulAssign<Self, Self> + Ceiling<Output = Self> + CeilingAssign + CeilingLogBase2<Output = i64> + CeilingLogBasePowerOf2<u64, Output = i64> + CheckedLogBase2<Output = i64> + CheckedLogBasePowerOf2<u64, Output = i64> + ConvertibleFrom<u8> + ConvertibleFrom<u16> + ConvertibleFrom<u32> + ConvertibleFrom<u64> + ConvertibleFrom<u128> + ConvertibleFrom<usize> + ConvertibleFrom<i8> + ConvertibleFrom<i16> + ConvertibleFrom<i32> + ConvertibleFrom<i64> + ConvertibleFrom<i128> + ConvertibleFrom<isize> + Copy + Debug + Default + Display + Div<Output = Self> + DivAssign + Floor<Output = Self> + FloorAssign + FloorLogBase2<Output = i64> + FloorLogBasePowerOf2<u64, Output = i64> + FmtRyuString + From<f32> + FromStr + IntegerMantissaAndExponent<u64, i64> + Into<f64> + IsInteger + IsPowerOf2 + Iverson + LowerExp + Min + Max + Mul<Output = Self> + MulAssign<Self> + Named + Neg<Output = Self> + NegAssign + NegativeOne + NextPowerOf2<Output = Self> + NextPowerOf2Assign + One + PartialEq<Self> + PartialOrd<Self> + Pow<i64, Output = Self> + Pow<Self, Output = Self> + PowAssign<i64> + PowAssign<Self> + PowerOf2<i64> + Product + RawMantissaAndExponent<u64, u64> + Rem<Output = Self> + RemAssign<Self> + RoundingFrom<u8> + RoundingFrom<u16> + RoundingFrom<u32> + RoundingFrom<u64> + RoundingFrom<u128> + RoundingFrom<usize> + RoundingFrom<i8> + RoundingFrom<i16> + RoundingFrom<i32> + RoundingFrom<i64> + RoundingFrom<i128> + RoundingFrom<isize> + RoundingInto<u8> + RoundingInto<u16> + RoundingInto<u32> + RoundingInto<u64> + RoundingInto<u128> + RoundingInto<usize> + RoundingInto<i8> + RoundingInto<i16> + RoundingInto<i32> + RoundingInto<i64> + RoundingInto<i128> + RoundingInto<isize> + SciMantissaAndExponent<Self, i64> + Sign + Sized + Sqrt<Output = Self> + SqrtAssign + Square<Output = Self> + SquareAssign + Sub<Output = Self> + SubAssign<Self> + SubMul<Output = Self> + SubMulAssign<Self, Self> + Sum<Self> + Two + UpperExp + Zero {
Show 16 associated constants and 16 methods const WIDTH: u64; const MANTISSA_WIDTH: u64; const MIN_POSITIVE_SUBNORMAL: Self; const MAX_SUBNORMAL: Self; const MIN_POSITIVE_NORMAL: Self; const MAX_FINITE: Self; const NEGATIVE_ZERO: Self; const POSITIVE_INFINITY: Self; const NEGATIVE_INFINITY: Self; const NAN: Self; const SMALLEST_UNREPRESENTABLE_UINT: u64; const LARGEST_ORDERED_REPRESENTATION: u64; const EXPONENT_WIDTH: u64 = _; const MIN_NORMAL_EXPONENT: i64 = _; const MIN_EXPONENT: i64 = _; const MAX_EXPONENT: i64 = _; fn is_nan(self) -> bool; fn is_infinite(self) -> bool; fn is_finite(self) -> bool; fn is_normal(self) -> bool; fn classify(self) -> FpCategory; fn to_bits(self) -> u64; fn from_bits(v: u64) -> Self; fn is_negative_zero(self) -> bool { ... } fn abs_negative_zero(self) -> Self { ... } fn abs_negative_zero_assign(&mut self) { ... } fn next_higher(self) -> Self { ... } fn next_lower(self) -> Self { ... } fn to_ordered_representation(self) -> u64 { ... } fn from_ordered_representation(n: u64) -> Self { ... } fn precision(self) -> u64 { ... } fn max_precision_for_sci_exponent(exponent: i64) -> u64 { ... }
}
Expand description

This trait defines functions on primitive float types: f32 and f64.

Many of the functions here concern exponents and mantissas. We define three ways to express a float, each with its own exponent and mantissa. In the following, let $x$ be an arbitrary positive, finite, non-zero, non-NaN float. Let $M$ and $E$ be the mantissa width and exponent width of the floating point type; for f32s, this is 23 and 8, and for f64s it’s 52 and 11.

In the following we assume that $x$ is positive, but you can easily extend these definitions to negative floats by first taking their absolute value.

raw form

The raw exponent and raw mantissa are the actual bit patterns used to represent the components of $x$. The raw exponent $e_r$ is an integer in $[0, 2^E-2]$ and the raw mantissa $m_r$ is an integer in $[0, 2^M-1]$. Since we are dealing with a nonzero $x$, we forbid $e_r$ and $m_r$ from both being zero. We have $$ x = \begin{cases} 2^{2-2^{E-1}-M}m_r & \text{if} \quad e_r = 0, \\ 2^{e_r-2^{E-1}+1}(2^{-M}m_r+1) & \textrm{otherwise}, \end{cases} $$ $$ e_r = \begin{cases} 0 & \text{if} \quad x < 2^{2-2^{E-1}}, \\ \lfloor \log_2 x \rfloor + 2^{E-1} - 1 & \textrm{otherwise}, \end{cases} $$ $$ m_r = \begin{cases} 2^{M+2^{E-1}-2}x & \text{if} \quad x < 2^{2-2^{E-1}}, \\ 2^M \left ( \frac{x}{2^{\lfloor \log_2 x \rfloor}}-1\right ) & \textrm{otherwise}. \end{cases} $$

scientific form

We can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1 \leq m_s < 2$. If $x$ is a valid float, the scientific mantissa $m_s$ is always exactly representable as a float of the same type. We have $$ x = 2^{e_s}m_s, $$ $$ e_s = \lfloor \log_2 x \rfloor, $$ $$ m_s = \frac{x}{2^{\lfloor \log_2 x \rfloor}}. $$

integer form

We can also write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. We have $$ x = 2^{e_i}m_i, $$ $e_i$ is the unique integer such that $x/2^{e_i}$is an odd integer, and $$ m_i = \frac{x}{2^{e_i}}. $$

Required Associated Constants§

The number of bits taken up by the type.

This is $M+E+1$. The three terms in the sum correspond to the width of the mantissa, the width of the exponent, and the sign bit.

  • For f32s, this is 32.
  • For f64s, this is 64.

The number of bits taken up by the mantissa.

  • For f32s, this is 23.
  • For f64s, this is 52.

The smallest positive float. This is $2^{2-2^{E-1}-M}$.

  • For f32s, this is $2^{-149}$, or 1.0e-45.
  • For f64s, this is $2^{-1074}$, or 5.0e-324.

The largest float in the subnormal range. This is $2^{2-2^{E-1}-M}(2^M-1)$.

  • For f32s, this is $2^{-149}(2^{23}-1)$, or 1.1754942e-38.
  • For f64s, this is $2^{-1074}(2^{52}-1)$, or 2.225073858507201e-308.

The smallest positive normal float. This is $2^{2-2^{E-1}}$.

  • For f32s, this is $2^{-126}$, or 1.1754944e-38.
  • For f64s, this is $2^{-1022}$, or 2.2250738585072014e-308.

The largest finite float. This is $2^{2^{E-1}-1}(2-2^{-M})$.

  • For f32s, this is $2^{127}(2-2^{-23})$, or 3.4028235e38.
  • For f64s, this is $2^{1023}(2-2^{-52})$, or 1.7976931348623157e308.

The smallest positive integer that cannot be represented as a float. This is $2^{M+1}+1$.

  • For f32s, this is $2^{24}+1$, or 16777217.
  • For f64s, this is $2^{53}+1$, or 9007199254740993.

If you list all floats in increasing order, excluding NaN and giving negative and positive zero separate adjacent spots, this will be index of the last element, positive infinity. It is $2^{M+1}(2^E-1)+1$.

  • For f32s, this is $2^{32}-2^{24}+1$, or 4278190081.
  • For f64s, this is $2^{64}-2^{53}+1$, or 18437736874454810625.

Provided Associated Constants§

The number of bits taken up by the exponent.

  • For f32s, this is 8.
  • For f64s, this is 11.

The smallest possible exponent of a float in the normal range. Any floats with smaller exponents are subnormal and thus have reduced precision. This is $2-2^{E-1}$.

  • For f32s, this is -126.
  • For f64s, this is -1022.

The smallest possible exponent of a float. This is $2-2^{E-1}-M$.

  • For f32s, this is -149.
  • For f64s, this is -1074.

The largest possible exponent of a float. This is $2^{E-1}-1$.

  • For f32s, this is 127.
  • For f64s, this is 1023.

Required Methods§

Provided Methods§

Tests whether self is negative zero.

Worst-case complexity

Constant time and additional memory.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;

assert!((-0.0).is_negative_zero());
assert!(!0.0.is_negative_zero());
assert!(!1.0.is_negative_zero());
assert!(!f32::NAN.is_negative_zero());
assert!(!f32::POSITIVE_INFINITY.is_negative_zero());

If self is negative zero, returns positive zero; otherwise, returns self.

Worst-case complexity

Constant time and additional memory.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_base::num::float::NiceFloat;

assert_eq!(NiceFloat((-0.0).abs_negative_zero()), NiceFloat(0.0));
assert_eq!(NiceFloat(0.0.abs_negative_zero()), NiceFloat(0.0));
assert_eq!(NiceFloat(1.0.abs_negative_zero()), NiceFloat(1.0));
assert_eq!(NiceFloat((-1.0).abs_negative_zero()), NiceFloat(-1.0));
assert_eq!(NiceFloat(f32::NAN.abs_negative_zero()), NiceFloat(f32::NAN));

If self is negative zero, replaces it with positive zero; otherwise, leaves self unchanged.

Worst-case complexity

Constant time and additional memory.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_base::num::float::NiceFloat;

let mut f = -0.0;
f.abs_negative_zero_assign();
assert_eq!(NiceFloat(f), NiceFloat(0.0));

let mut f = 0.0;
f.abs_negative_zero_assign();
assert_eq!(NiceFloat(f), NiceFloat(0.0));

let mut f = 1.0;
f.abs_negative_zero_assign();
assert_eq!(NiceFloat(f), NiceFloat(1.0));

let mut f = -1.0;
f.abs_negative_zero_assign();
assert_eq!(NiceFloat(f), NiceFloat(-1.0));

let mut f = f32::NAN;
f.abs_negative_zero_assign();
assert_eq!(NiceFloat(f), NiceFloat(f32::NAN));

Returns the smallest float larger than self.

Passing -0.0 returns 0.0; passing NaN or positive infinity panics.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is NaN or positive infinity.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_base::num::float::NiceFloat;

assert_eq!(NiceFloat((-0.0f32).next_higher()), NiceFloat(0.0));
assert_eq!(NiceFloat(0.0f32.next_higher()), NiceFloat(1.0e-45));
assert_eq!(NiceFloat(1.0f32.next_higher()), NiceFloat(1.0000001));
assert_eq!(NiceFloat((-1.0f32).next_higher()), NiceFloat(-0.99999994));

Returns the largest float smaller than self.

Passing 0.0 returns -0.0; passing NaN or negative infinity panics.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is NaN or negative infinity.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;
use malachite_base::num::float::NiceFloat;

assert_eq!(NiceFloat(0.0f32.next_lower()), NiceFloat(-0.0));
assert_eq!(NiceFloat((-0.0f32).next_lower()), NiceFloat(-1.0e-45));
assert_eq!(NiceFloat(1.0f32.next_lower()), NiceFloat(0.99999994));
assert_eq!(NiceFloat((-1.0f32).next_lower()), NiceFloat(-1.0000001));
Examples found in repository?
src/num/exhaustive/mod.rs (line 1788)
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
    fn get_ys(&self, &sci_exponent: &i64) -> ExhaustivePrimitiveFloatsWithExponentInRange<T> {
        let a = if sci_exponent == self.a_sci_exponent {
            self.a
        } else {
            T::from_integer_mantissa_and_exponent(1, sci_exponent).unwrap()
        };
        let b = if sci_exponent == self.b_sci_exponent {
            self.b
        } else {
            T::from_integer_mantissa_and_exponent(1, sci_exponent + 1)
                .unwrap()
                .next_lower()
        };
        exhaustive_primitive_floats_with_sci_exponent_in_range(a, b, sci_exponent)
    }
}

#[inline]
fn exhaustive_positive_finite_primitive_floats_in_range_helper<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> ExhaustiveDependentPairs<
    i64,
    T,
    RulerSequence<usize>,
    ExhaustivePositiveFinitePrimitiveFloatsInRangeGenerator<T>,
    ExhaustiveSignedRange<i64>,
    ExhaustivePrimitiveFloatsWithExponentInRange<T>,
> {
    assert!(a.is_finite());
    assert!(b.is_finite());
    assert!(a > T::ZERO);
    assert!(a <= b);
    let (am, ae) = a.raw_mantissa_and_exponent();
    let (bm, be) = b.raw_mantissa_and_exponent();
    let a_sci_exponent = if ae == 0 {
        i64::wrapping_from(am.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(ae) - T::MAX_EXPONENT
    };
    let b_sci_exponent = if be == 0 {
        i64::wrapping_from(bm.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(be) - T::MAX_EXPONENT
    };
    exhaustive_dependent_pairs(
        ruler_sequence(),
        exhaustive_signed_inclusive_range(a_sci_exponent, b_sci_exponent),
        ExhaustivePositiveFinitePrimitiveFloatsInRangeGenerator {
            a,
            b,
            a_sci_exponent,
            b_sci_exponent,
            phantom: PhantomData,
        },
    )
}

#[doc(hidden)]
#[derive(Clone, Debug)]
pub struct ExhaustivePositiveFinitePrimitiveFloatsInRange<T: PrimitiveFloat>(
    ExhaustiveDependentPairs<
        i64,
        T,
        RulerSequence<usize>,
        ExhaustivePositiveFinitePrimitiveFloatsInRangeGenerator<T>,
        ExhaustiveSignedRange<i64>,
        ExhaustivePrimitiveFloatsWithExponentInRange<T>,
    >,
);

impl<T: PrimitiveFloat> Iterator for ExhaustivePositiveFinitePrimitiveFloatsInRange<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|p| p.1)
    }
}

#[doc(hidden)]
#[inline]
pub fn exhaustive_positive_finite_primitive_floats_in_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> ExhaustivePositiveFinitePrimitiveFloatsInRange<T> {
    ExhaustivePositiveFinitePrimitiveFloatsInRange(
        exhaustive_positive_finite_primitive_floats_in_range_helper(a, b),
    )
}

#[doc(hidden)]
#[derive(Clone, Debug)]
pub enum ExhaustiveNonzeroFinitePrimitiveFloatsInRange<T: PrimitiveFloat> {
    AllPositive(ExhaustivePositiveFinitePrimitiveFloatsInRange<T>),
    AllNegative(ExhaustivePositiveFinitePrimitiveFloatsInRange<T>),
    PositiveAndNegative(
        bool,
        ExhaustivePositiveFinitePrimitiveFloatsInRange<T>,
        ExhaustivePositiveFinitePrimitiveFloatsInRange<T>,
    ),
}

impl<T: PrimitiveFloat> Iterator for ExhaustiveNonzeroFinitePrimitiveFloatsInRange<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            ExhaustiveNonzeroFinitePrimitiveFloatsInRange::AllPositive(ref mut xs) => xs.next(),
            ExhaustiveNonzeroFinitePrimitiveFloatsInRange::AllNegative(ref mut xs) => {
                xs.next().map(T::neg)
            }
            ExhaustiveNonzeroFinitePrimitiveFloatsInRange::PositiveAndNegative(
                ref mut toggle,
                ref mut pos_xs,
                ref mut neg_xs,
            ) => {
                toggle.not_assign();
                if *toggle {
                    pos_xs.next().or_else(|| neg_xs.next().map(T::neg))
                } else {
                    neg_xs.next().map(T::neg).or_else(|| pos_xs.next())
                }
            }
        }
    }
}

#[doc(hidden)]
#[inline]
pub fn exhaustive_nonzero_finite_primitive_floats_in_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> ExhaustiveNonzeroFinitePrimitiveFloatsInRange<T> {
    assert!(a.is_finite());
    assert!(b.is_finite());
    assert!(a != T::ZERO);
    assert!(b != T::ZERO);
    assert!(a <= b);
    if a > T::ZERO {
        ExhaustiveNonzeroFinitePrimitiveFloatsInRange::AllPositive(
            exhaustive_positive_finite_primitive_floats_in_range(a, b),
        )
    } else if b < T::ZERO {
        ExhaustiveNonzeroFinitePrimitiveFloatsInRange::AllNegative(
            exhaustive_positive_finite_primitive_floats_in_range(-b, -a),
        )
    } else {
        ExhaustiveNonzeroFinitePrimitiveFloatsInRange::PositiveAndNegative(
            false,
            exhaustive_positive_finite_primitive_floats_in_range(T::MIN_POSITIVE_SUBNORMAL, b),
            exhaustive_positive_finite_primitive_floats_in_range(T::MIN_POSITIVE_SUBNORMAL, -a),
        )
    }
}

/// Generates all primitive floats in an interval.
///
/// This `enum` is created by [`exhaustive_primitive_float_range`] and
/// [`exhaustive_primitive_float_inclusive_range`]; see their documentation for more.
#[allow(clippy::large_enum_variant)]
#[derive(Clone, Debug)]
pub enum ExhaustivePrimitiveFloatInclusiveRange<T: PrimitiveFloat> {
    JustSpecials(IntoIter<T>),
    NotJustSpecials(Chain<IntoIter<T>, ExhaustiveNonzeroFinitePrimitiveFloatsInRange<T>>),
}

impl<T: PrimitiveFloat> Iterator for ExhaustivePrimitiveFloatInclusiveRange<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            ExhaustivePrimitiveFloatInclusiveRange::JustSpecials(ref mut xs) => xs.next(),
            ExhaustivePrimitiveFloatInclusiveRange::NotJustSpecials(ref mut xs) => xs.next(),
        }
    }
}

/// Generates all primitive floats in the half-open interval $[a, b)$.
///
/// Positive and negative zero are treated as two distinct values, with negative zero being smaller
/// than zero.
///
/// The floats are generated in a way such that simpler floats (with lower precision) are generated
/// first. To generate floats in ascending order instead, use [`primitive_float_increasing_range`]
/// instead.
///
/// `NiceFloat(a)` must be less than or equal to `NiceFloat(b)`. If `NiceFloat(a)` and
/// `NiceFloat(b)` are equal, the range is empty.
///
/// Let $\varphi$ be
/// [`to_ordered_representation`](super::basic::floats::PrimitiveFloat::to_ordered_representation):
///
/// The output length is $\varphi(b) - \varphi(a)$.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `NiceFloat(a) > NiceFloat(b)`.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_primitive_float_range;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(
///         exhaustive_primitive_float_range::<f32>(core::f32::consts::E, core::f32::consts::PI)
///                 .map(NiceFloat),
///         50
///     ),
///     "[3.0, 2.75, 2.875, 3.125, 2.8125, 2.9375, 3.0625, 2.71875, 2.78125, 2.84375, 2.90625, \
///     2.96875, 3.03125, 3.09375, 2.734375, 2.765625, 2.796875, 2.828125, 2.859375, 2.890625, \
///     2.921875, 2.953125, 2.984375, 3.015625, 3.046875, 3.078125, 3.109375, 3.140625, \
///     2.7265625, 2.7421875, 2.7578125, 2.7734375, 2.7890625, 2.8046875, 2.8203125, 2.8359375, \
///     2.8515625, 2.8671875, 2.8828125, 2.8984375, 2.9140625, 2.9296875, 2.9453125, 2.9609375, \
///     2.9765625, 2.9921875, 3.0078125, 3.0234375, 3.0390625, 3.0546875, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_primitive_float_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> ExhaustivePrimitiveFloatInclusiveRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    assert!(NiceFloat(a) <= NiceFloat(b));
    if NiceFloat(a) == NiceFloat(b) {
        ExhaustivePrimitiveFloatInclusiveRange::JustSpecials(Vec::new().into_iter())
    } else {
        exhaustive_primitive_float_inclusive_range(a, b.next_lower())
    }
}
More examples
Hide additional examples
src/num/random/mod.rs (line 2040)
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
    fn next(&mut self) -> Option<T> {
        let sci_exponent = self.sci_exponents.next().unwrap();
        let ae = self.ae;
        let be = self.be;
        let am = self.am;
        let bm = self.bm;
        let precision_ranges = self
            .precision_range_map
            .entry(sci_exponent)
            .or_insert_with(|| {
                let am = if sci_exponent == ae {
                    am
                } else {
                    T::from_integer_mantissa_and_exponent(1, sci_exponent)
                        .unwrap()
                        .raw_mantissa()
                };
                let bm = if sci_exponent == be {
                    bm
                } else {
                    T::from_integer_mantissa_and_exponent(1, sci_exponent + 1)
                        .unwrap()
                        .next_lower()
                        .raw_mantissa()
                };
                (1..=T::max_precision_for_sci_exponent(sci_exponent))
                    .filter_map(|p| mantissas_inclusive::<T>(sci_exponent, am, bm, p))
                    .collect_vec()
            });
        assert!(!precision_ranges.is_empty());
        let i = self.precision_indices.next().unwrap() % precision_ranges.len();
        let t = precision_ranges[i];
        let mantissa = (self.ranges.next_in_inclusive_range(t.1, t.2) << 1) | 1;
        Some(T::from_integer_mantissa_and_exponent(mantissa, t.0).unwrap())
    }
}

fn special_random_positive_finite_float_inclusive_range<T: PrimitiveFloat>(
    seed: Seed,
    a: T,
    b: T,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
) -> SpecialRandomPositiveFiniteFloatInclusiveRange<T> {
    assert!(a.is_finite());
    assert!(b.is_finite());
    assert!(a > T::ZERO);
    assert!(a <= b);
    let (am, ae) = a.raw_mantissa_and_exponent();
    let (bm, be) = b.raw_mantissa_and_exponent();
    let ae = if ae == 0 {
        i64::wrapping_from(am.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(ae) - T::MAX_EXPONENT
    };
    let be = if be == 0 {
        i64::wrapping_from(bm.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(be) - T::MAX_EXPONENT
    };
    SpecialRandomPositiveFiniteFloatInclusiveRange {
        phantom: PhantomData,
        am,
        bm,
        ae,
        be,
        sci_exponents: geometric_random_signed_inclusive_range(
            seed.fork("exponents"),
            ae,
            be,
            mean_sci_exponent_numerator,
            mean_sci_exponent_denominator,
        ),
        precision_range_map: HashMap::new(),
        precision_indices: geometric_random_unsigneds(
            seed.fork("precisions"),
            mean_precision_numerator,
            mean_precision_denominator,
        ),
        ranges: variable_range_generator(seed.fork("ranges")),
    }
}

#[allow(clippy::large_enum_variant)]
#[doc(hidden)]
#[derive(Clone, Debug)]
pub enum SpecialRandomFiniteFloatInclusiveRange<T: PrimitiveFloat> {
    AllPositive(SpecialRandomPositiveFiniteFloatInclusiveRange<T>),
    AllNegative(SpecialRandomPositiveFiniteFloatInclusiveRange<T>),
    PositiveAndNegative(
        RandomBools,
        SpecialRandomPositiveFiniteFloatInclusiveRange<T>,
        SpecialRandomPositiveFiniteFloatInclusiveRange<T>,
    ),
}

impl<T: PrimitiveFloat> Iterator for SpecialRandomFiniteFloatInclusiveRange<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            SpecialRandomFiniteFloatInclusiveRange::AllPositive(ref mut xs) => xs.next(),
            SpecialRandomFiniteFloatInclusiveRange::AllNegative(ref mut xs) => {
                xs.next().map(|x| -x)
            }
            SpecialRandomFiniteFloatInclusiveRange::PositiveAndNegative(
                ref mut bs,
                ref mut xs,
                ref mut ys,
            ) => {
                if bs.next().unwrap() {
                    xs.next()
                } else {
                    ys.next().map(|x| -x)
                }
            }
        }
    }
}

fn special_random_finite_float_inclusive_range<T: PrimitiveFloat>(
    seed: Seed,
    a: T,
    b: T,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
) -> SpecialRandomFiniteFloatInclusiveRange<T> {
    assert!(a.is_finite());
    assert!(b.is_finite());
    assert_ne!(a, T::ZERO);
    assert_ne!(b, T::ZERO);
    assert!(a <= b);
    if a > T::ZERO {
        SpecialRandomFiniteFloatInclusiveRange::AllPositive(
            special_random_positive_finite_float_inclusive_range(
                seed,
                a,
                b,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            ),
        )
    } else if b < T::ZERO {
        SpecialRandomFiniteFloatInclusiveRange::AllNegative(
            special_random_positive_finite_float_inclusive_range(
                seed,
                -b,
                -a,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            ),
        )
    } else {
        SpecialRandomFiniteFloatInclusiveRange::PositiveAndNegative(
            random_bools(seed.fork("bs")),
            special_random_positive_finite_float_inclusive_range(
                seed,
                T::MIN_POSITIVE_SUBNORMAL,
                b,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            ),
            special_random_positive_finite_float_inclusive_range(
                seed,
                T::MIN_POSITIVE_SUBNORMAL,
                -a,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            ),
        )
    }
}

/// Generates random primitive floats in a range.
///
/// This `enum` is created by [`special_random_primitive_float_range`]; see its documentation for
/// more.
#[allow(clippy::large_enum_variant)]
#[derive(Clone, Debug)]
pub enum SpecialRandomFloatInclusiveRange<T: PrimitiveFloat> {
    OnlySpecial(RandomValuesFromVec<T>),
    NoSpecial(Box<SpecialRandomFiniteFloatInclusiveRange<T>>),
    Special(Box<WithSpecialValues<SpecialRandomFiniteFloatInclusiveRange<T>>>),
}

impl<T: PrimitiveFloat> Iterator for SpecialRandomFloatInclusiveRange<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            SpecialRandomFloatInclusiveRange::OnlySpecial(ref mut xs) => xs.next(),
            SpecialRandomFloatInclusiveRange::NoSpecial(ref mut xs) => xs.next(),
            SpecialRandomFloatInclusiveRange::Special(ref mut xs) => xs.next(),
        }
    }
}

/// Generates random primitive floats in the half-open interval $[a, b)$.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that any special
/// values (positive or negative zero or infinity) are generated, provided that they are in the
/// range. You can also specify the mean absolute sci-exponent and precision by passing the
/// numerators and denominators of their means of the finite floats.
///
/// But note that the means are only approximate, since the distributions we are sampling are
/// truncated geometric, and their exact means are somewhat annoying to deal with. The practical
/// implications are that
/// - The actual mean is lower than the specified means.
/// - However, increasing the approximate mean increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater the smallest absolute of any sci-exponent of
///   a float in the range, and the precision mean greater than 2, but they may be as high as you
/// like.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater the smallest absolute value of any
///   sci-exponent of a float in the range, and the precision mean greater than 2, but they may be
///   as high as you like.
///
/// `NaN` is never generated.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if $a$ or $b$ are `NaN`, if $a$ is greater than or equal to $b$ in the `NiceFloat`
/// ordering, if any of the denominators are zero, if the special probability is greater than 1, if
/// the mean precision is less than 2, or if the mean sci-exponent is less than or equal to the
/// minimum absolute value of any sci-exponent in the range.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_primitive_float_range;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_primitive_float_range::<f32>(
///             EXAMPLE_SEED,
///             core::f32::consts::E,
///             core::f32::consts::PI,
///             10,
///             1,
///             10,
///             1,
///             1,
///             100
///         ).map(NiceFloat),
///         20
///     ),
///     "[2.9238281, 2.953125, 3.0, 2.8671875, 2.8125, 3.125, 3.015625, 2.8462658, 3.140625, \
///     2.875, 3.0, 2.75, 3.0, 2.71875, 2.75, 3.0214844, 2.970642, 3.0179443, 2.968872, 2.75, ...]"
/// );
/// ```
pub fn special_random_primitive_float_range<T: PrimitiveFloat>(
    seed: Seed,
    a: T,
    b: T,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_special_p_numerator: u64,
    mean_special_p_denominator: u64,
) -> SpecialRandomFloatInclusiveRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    assert!(NiceFloat(a) < NiceFloat(b));
    special_random_primitive_float_inclusive_range(
        seed,
        a,
        b.next_lower(),
        mean_sci_exponent_numerator,
        mean_sci_exponent_denominator,
        mean_precision_numerator,
        mean_precision_denominator,
        mean_special_p_numerator,
        mean_special_p_denominator,
    )
}

Maps self to an integer. The map preserves ordering, and adjacent floats are mapped to adjacent integers.

Negative infinity is mapped to 0, and positive infinity is mapped to the largest value, LARGEST_ORDERED_REPRESENTATION. Negative and positive zero are mapped to distinct adjacent values. Passing in NaN panics.

The inverse operation is from_ordered_representation.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is NaN.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;

assert_eq!(f32::NEGATIVE_INFINITY.to_ordered_representation(), 0);
assert_eq!((-0.0f32).to_ordered_representation(), 2139095040);
assert_eq!(0.0f32.to_ordered_representation(), 2139095041);
assert_eq!(1.0f32.to_ordered_representation(), 3204448257);
assert_eq!(
    f32::POSITIVE_INFINITY.to_ordered_representation(),
    4278190081
);
Examples found in repository?
src/num/exhaustive/mod.rs (line 507)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
pub fn primitive_float_increasing_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> PrimitiveFloatIncreasingRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    if NiceFloat(a) > NiceFloat(b) {
        panic!(
            "a must be less than or equal to b. a: {}, b: {}",
            NiceFloat(a),
            NiceFloat(b)
        );
    }
    PrimitiveFloatIncreasingRange {
        phantom: PhantomData,
        xs: primitive_int_increasing_range(
            a.to_ordered_representation(),
            b.to_ordered_representation(),
        ),
    }
}

/// Generates all primitive floats in the closed interval $[a, b]$, in ascending order.
///
/// Positive and negative zero are treated as two distinct values, with negative zero being smaller
/// than zero.
///
/// `NiceFloat(a)` must be less than or equal to `NiceFloat(b)`. If `NiceFloat(a)` and
/// `NiceFloat(b)` are equal, the range contains a single element.
///
/// Let $\varphi$ be
/// [`to_ordered_representation`](super::basic::floats::PrimitiveFloat::to_ordered_representation):
///
/// The output is $(\varphi^{-1}(k))_{k=\varphi(a)}^\varphi(b)$.
///
/// The output length is $\varphi(b) - \varphi(a) + 1$.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `NiceFloat(a) > NiceFloat(b)`.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::primitive_float_increasing_inclusive_range;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(
///         primitive_float_increasing_inclusive_range::<f32>(1.0, 2.0).map(NiceFloat),
///         20
///     ),
///     "[1.0, 1.0000001, 1.0000002, 1.0000004, 1.0000005, 1.0000006, 1.0000007, 1.0000008, \
///     1.000001, 1.0000011, 1.0000012, 1.0000013, 1.0000014, 1.0000015, 1.0000017, 1.0000018, \
///     1.0000019, 1.000002, 1.0000021, 1.0000023, ...]"
/// );
/// assert_eq!(
///     prefix_to_string(
///         primitive_float_increasing_inclusive_range::<f32>(1.0, 2.0).rev().map(NiceFloat),
///         20
///     ),
///     "[2.0, 1.9999999, 1.9999998, 1.9999996, 1.9999995, 1.9999994, 1.9999993, 1.9999992, \
///     1.999999, 1.9999989, 1.9999988, 1.9999987, 1.9999986, 1.9999985, 1.9999983, 1.9999982, \
///     1.9999981, 1.999998, 1.9999979, 1.9999977, ...]"
/// );
/// ```
pub fn primitive_float_increasing_inclusive_range<T: PrimitiveFloat>(
    a: T,
    b: T,
) -> PrimitiveFloatIncreasingRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    if NiceFloat(a) > NiceFloat(b) {
        panic!(
            "a must be less than or equal to b. a: {}, b: {}",
            NiceFloat(a),
            NiceFloat(b)
        );
    }
    PrimitiveFloatIncreasingRange {
        phantom: PhantomData,
        xs: primitive_int_increasing_inclusive_range(
            a.to_ordered_representation(),
            b.to_ordered_representation(),
        ),
    }
}
More examples
Hide additional examples
src/num/random/mod.rs (line 971)
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
pub fn random_primitive_float_range<T: PrimitiveFloat>(
    seed: Seed,
    a: T,
    b: T,
) -> RandomPrimitiveFloatRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    if NiceFloat(a) >= NiceFloat(b) {
        panic!(
            "a must be less than b. a: {}, b: {}",
            NiceFloat(a),
            NiceFloat(b)
        );
    }
    RandomPrimitiveFloatRange {
        phantom: PhantomData,
        xs: random_unsigned_range(
            seed,
            a.to_ordered_representation(),
            b.to_ordered_representation(),
        ),
    }
}

/// Generates random primitive floats in the closed interval $[a, b]$.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, if the range
/// is $[0, 2]$, a float in $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since
/// these subranges contain an equal number of floats.
///
/// Positive and negative zero are treated as two distinct values, with negative zero being smaller
/// than zero.
///
/// $a$ must be less than or equal to $b$.
///
/// `NaN` is never generated.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if $a > b$.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_primitive_float_inclusive_range;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         random_primitive_float_inclusive_range::<f32>(EXAMPLE_SEED, -0.1, 0.1).map(NiceFloat),
///         10
///     ),
///     "[5.664681e-11, 1.2492925e-35, 2.3242339e-29, 4.699183e-7, -2.8244436e-36, -2.264039e-37, \
///     -0.0000017299129, 1.40616e-23, 2.7418007e-27, 1.5418819e-16, ...]"
/// );
/// ```
#[inline]
pub fn random_primitive_float_inclusive_range<T: PrimitiveFloat>(
    seed: Seed,
    a: T,
    b: T,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    assert!(!a.is_nan());
    assert!(!b.is_nan());
    if NiceFloat(a) > NiceFloat(b) {
        panic!(
            "a must be less than or equal to b. a: {}, b: {}",
            NiceFloat(a),
            NiceFloat(b)
        );
    }
    RandomPrimitiveFloatInclusiveRange {
        phantom: PhantomData,
        xs: random_unsigned_inclusive_range(
            seed,
            a.to_ordered_representation(),
            b.to_ordered_representation(),
        ),
    }
}

/// Generates finite positive primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since these subranges contain an
/// equal number of floats.
///
/// Positive zero is generated; negative zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_positive_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         random_positive_finite_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat),
///         10
///     ),
///     "[9.5715654e26, 209.6476, 386935780.0, 7.965817e30, 0.00021030706, 0.0027270128, \
///     3.4398167e-34, 2.3397111e14, 44567765000.0, 2.3479653e21, ...]"
/// );
/// ```
#[inline]
pub fn random_positive_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    random_primitive_float_inclusive_range(seed, T::MIN_POSITIVE_SUBNORMAL, T::MAX_FINITE)
}

/// Generates finite negative primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $(-1/2, 1/4]$ is as likely to be chosen as a float in $(-2, -1]$, since these subranges contain
/// an equal number of floats.
///
/// Negative zero is generated; positive zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_negative_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         random_negative_finite_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat),
///         10
///     ),
///     "[-2.3484663e-27, -0.010641626, -5.8060583e-9, -2.8182442e-31, -10462.532, -821.12994, \
///     -6.303163e33, -9.50376e-15, -4.9561126e-11, -8.565163e-22, ...]"
/// );
/// ```
#[inline]
pub fn random_negative_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    random_primitive_float_inclusive_range(seed, -T::MAX_FINITE, -T::MIN_POSITIVE_SUBNORMAL)
}

/// Generates finite nonzero primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since these subranges contain an
/// equal number of floats.
///
/// Neither positive nor negative zero are generated. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_nonzero_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         random_nonzero_finite_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat),
///         10
///     ),
///     "[-2.3484663e-27, 2.287989e-18, -2.0729893e-12, 3.360012e28, -9.021723e-32, 3564911.2, \
///     -0.0000133769445, -1.8855448e18, 8.2494555e-29, 2.2178014e-38, ...]"
/// );
/// ```
#[inline]
pub fn random_nonzero_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> NonzeroValues<RandomPrimitiveFloatInclusiveRange<T>> {
    nonzero_values(random_finite_primitive_floats(seed))
}

/// Generates finite primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since these subranges contain an
/// equal number of floats.
///
/// Positive zero and negative zero are both generated. `NaN` is not.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(random_finite_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat), 10),
///     "[-2.3484663e-27, 2.287989e-18, -2.0729893e-12, 3.360012e28, -9.021723e-32, 3564911.2, \
///     -0.0000133769445, -1.8855448e18, 8.2494555e-29, 2.2178014e-38, ...]"
/// );
/// ```
#[inline]
pub fn random_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    random_primitive_float_inclusive_range(seed, -T::MAX_FINITE, T::MAX_FINITE)
}

/// Generates positive primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since these subranges contain an
/// equal number of floats.
///
/// Positive zero is generated; negative zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_positive_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(random_positive_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat), 10),
///     "[9.5715654e26, 209.6476, 386935780.0, 7.965817e30, 0.00021030706, 0.0027270128, \
///     3.4398167e-34, 2.3397111e14, 44567765000.0, 2.3479653e21, ...]"
/// );
/// ```
#[inline]
pub fn random_positive_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    random_primitive_float_inclusive_range(seed, T::MIN_POSITIVE_SUBNORMAL, T::POSITIVE_INFINITY)
}

/// Generates negative primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $(-1/2, -1/4]$ is as likely to be chosen as a float in $(-2, -1]$, since these subranges
/// contain an equal number of floats.
///
/// Negative zero is generated; positive zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_negative_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(random_negative_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat), 10),
///     "[-2.3484665e-27, -0.010641627, -5.8060587e-9, -2.8182444e-31, -10462.533, -821.13, \
///     -6.3031636e33, -9.5037605e-15, -4.956113e-11, -8.565164e-22, ...]"
/// );
/// ```
#[inline]
pub fn random_negative_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> RandomPrimitiveFloatInclusiveRange<T> {
    random_primitive_float_inclusive_range(seed, T::NEGATIVE_INFINITY, -T::MIN_POSITIVE_SUBNORMAL)
}

/// Generates nonzero primitive floats.
///
/// Every float within the range has an equal probability of being chosen. This does not mean that
/// the distribution approximates a uniform distribution over the reals. For example, a float in
/// $[1/4, 1/2)$ is as likely to be chosen as a float in $[1, 2)$, since these subranges contain an
/// equal number of floats.
///
/// Neither positive nor negative zero are generated. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_nonzero_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(random_nonzero_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat), 10),
///     "[-2.3484665e-27, 2.2879888e-18, -2.0729896e-12, 3.3600117e28, -9.0217234e-32, 3564911.0, \
///     -0.000013376945, -1.885545e18, 8.249455e-29, 2.2178013e-38, ...]",
/// );
/// ```
#[inline]
pub fn random_nonzero_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
) -> NonzeroValues<RandomPrimitiveFloats<T>> {
    nonzero_values(random_primitive_floats(seed))
}

/// Generates random primitive floats.
///
/// This `struct` is created by [`random_primitive_floats`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct RandomPrimitiveFloats<T: PrimitiveFloat> {
    phantom: PhantomData<*const T>,
    pub(crate) xs: RandomUnsignedInclusiveRange<u64>,
    nan: u64,
}

impl<T: PrimitiveFloat> Iterator for RandomPrimitiveFloats<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.xs.next().map(|x| {
            if x == self.nan {
                T::NAN
            } else {
                T::from_ordered_representation(x)
            }
        })
    }
}

/// Generates finite primitive floats.
///
/// Every float has an equal probability of being chosen. This does not mean that the distribution
/// approximates a uniform distribution over the reals. For example, a float in $[1/4, 1/2)$ is as
/// likely to be chosen as a float in $[1, 2)$, since these subranges contain an equal number of
/// floats.
///
/// Positive zero, negative zero, and `NaN` are all generated.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::random_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(random_primitive_floats::<f32>(EXAMPLE_SEED).map(NiceFloat), 10),
///     "[-2.3484665e-27, 2.2879888e-18, -2.0729896e-12, 3.3600117e28, -9.0217234e-32, 3564911.0, \
///     -0.000013376945, -1.885545e18, 8.249455e-29, 2.2178013e-38, ...]"
/// );
/// ```
#[inline]
pub fn random_primitive_floats<T: PrimitiveFloat>(seed: Seed) -> RandomPrimitiveFloats<T> {
    let nan = T::POSITIVE_INFINITY.to_ordered_representation() + 1;
    RandomPrimitiveFloats {
        phantom: PhantomData,
        xs: random_unsigned_inclusive_range(seed, 0, nan),
        nan,
    }
}

Maps a non-negative integer, less than or equal to LARGEST_ORDERED_REPRESENTATION, to a float. The map preserves ordering, and adjacent integers are mapped to adjacent floats.

Zero is mapped to negative infinity, and LARGEST_ORDERED_REPRESENTATION is mapped to positive infinity. Negative and positive zero are produced by two distinct adjacent integers. NaN is never produced.

The inverse operation is to_ordered_representation.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is greater than LARGEST_ORDERED_REPRESENTATION.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;

assert_eq!(f32::from_ordered_representation(0), f32::NEGATIVE_INFINITY);
assert_eq!(f32::from_ordered_representation(2139095040), -0.0f32);
assert_eq!(f32::from_ordered_representation(2139095041), 0.0f32);
assert_eq!(f32::from_ordered_representation(3204448257), 1.0f32);
assert_eq!(
    f32::from_ordered_representation(4278190081),
    f32::POSITIVE_INFINITY
);
Examples found in repository?
src/num/random/mod.rs (line 1305)
1300
1301
1302
1303
1304
1305
1306
1307
1308
    fn next(&mut self) -> Option<T> {
        self.xs.next().map(|x| {
            if x == self.nan {
                T::NAN
            } else {
                T::from_ordered_representation(x)
            }
        })
    }

Returns the precision of a nonzero finite floating-point number.

The precision is the number of significant bits of the integer mantissa. For example, the floats with precision 1 are the powers of 2, those with precision 2 are 3 times a power of 2, those with precision 3 are 5 or 7 times a power of 2, and so on.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is zero, infinite, or NaN.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;

assert_eq!(1.0.precision(), 1);
assert_eq!(2.0.precision(), 1);
assert_eq!(3.0.precision(), 2);
assert_eq!(1.5.precision(), 2);
assert_eq!(1.234f32.precision(), 23);

Given a scientific exponent, returns the largest possible precision for a float with that exponent.

See the documentation of the precision function for a definition of precision.

For exponents greater than or equal to MIN_NORMAL_EXPONENT, the maximum precision is one more than the mantissa width. For smaller exponents (corresponding to the subnormal range), the precision is lower.

Worst-case complexity

Constant time and additional memory.

Panics

Panics if self is less than MIN_EXPONENT or greater than MAX_EXPONENT.

Examples
use malachite_base::num::basic::floats::PrimitiveFloat;

assert_eq!(f32::max_precision_for_sci_exponent(0), 24);
assert_eq!(f32::max_precision_for_sci_exponent(127), 24);
assert_eq!(f32::max_precision_for_sci_exponent(-149), 1);
assert_eq!(f32::max_precision_for_sci_exponent(-148), 2);
assert_eq!(f32::max_precision_for_sci_exponent(-147), 3);
Examples found in repository?
src/num/exhaustive/mod.rs (line 1065)
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
pub fn exhaustive_primitive_floats_with_sci_exponent_and_precision<T: PrimitiveFloat>(
    sci_exponent: i64,
    precision: u64,
) -> ConstantPrecisionPrimitiveFloats<T> {
    assert!(sci_exponent >= T::MIN_EXPONENT);
    assert!(sci_exponent <= T::MAX_EXPONENT);
    assert_ne!(precision, 0);
    let max_precision = T::max_precision_for_sci_exponent(sci_exponent);
    assert!(precision <= max_precision);
    let increment = u64::power_of_2(max_precision - precision + 1);
    let first_mantissa = if precision == 1 {
        1
    } else {
        u64::power_of_2(precision - 1) | 1
    };
    let first = T::from_integer_mantissa_and_exponent(
        first_mantissa,
        sci_exponent - i64::exact_from(precision) + 1,
    )
    .unwrap()
    .to_bits();
    let count = if precision == 1 {
        1
    } else {
        u64::power_of_2(precision - 2)
    };
    ConstantPrecisionPrimitiveFloats {
        phantom: PhantomData,
        n: first,
        increment,
        i: 0,
        count,
    }
}

#[doc(hidden)]
#[derive(Clone, Debug)]
struct PrimitiveFloatsWithExponentGenerator<T: PrimitiveFloat> {
    phantom: PhantomData<*const T>,
    sci_exponent: i64,
}

impl<T: PrimitiveFloat>
    ExhaustiveDependentPairsYsGenerator<u64, T, ConstantPrecisionPrimitiveFloats<T>>
    for PrimitiveFloatsWithExponentGenerator<T>
{
    #[inline]
    fn get_ys(&self, &precision: &u64) -> ConstantPrecisionPrimitiveFloats<T> {
        exhaustive_primitive_floats_with_sci_exponent_and_precision(self.sci_exponent, precision)
    }
}

#[inline]
fn exhaustive_primitive_floats_with_sci_exponent_helper<T: PrimitiveFloat>(
    sci_exponent: i64,
) -> LexDependentPairs<
    u64,
    T,
    PrimitiveFloatsWithExponentGenerator<T>,
    PrimitiveIntIncreasingRange<u64>,
    ConstantPrecisionPrimitiveFloats<T>,
> {
    lex_dependent_pairs(
        primitive_int_increasing_inclusive_range(
            1,
            T::max_precision_for_sci_exponent(sci_exponent),
        ),
        PrimitiveFloatsWithExponentGenerator {
            phantom: PhantomData,
            sci_exponent,
        },
    )
}

/// Generates all finite positive primitive floats with a specified `sci_exponent`.
///
/// This `struct` is created by [`exhaustive_primitive_floats_with_sci_exponent`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct ExhaustivePrimitiveFloatsWithExponent<T: PrimitiveFloat>(
    LexDependentPairs<
        u64,
        T,
        PrimitiveFloatsWithExponentGenerator<T>,
        PrimitiveIntIncreasingRange<u64>,
        ConstantPrecisionPrimitiveFloats<T>,
    >,
);

impl<T: PrimitiveFloat> Iterator for ExhaustivePrimitiveFloatsWithExponent<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|p| p.1)
    }
}

/// Generates all finite positive primitive floats with a specified sci-exponent.
///
/// Positive and negative zero are both excluded.
///
/// A finite positive primitive float may be uniquely expressed as $x = m_s2^e_s$, where
/// $1 \leq m_s < 2$ and $e_s$ is an integer; then $e$ is the sci-exponent. An integer $e_s$ occurs
/// as the sci-exponent of a float iff $2-2^{E-1}-M \leq e_s < 2^{E-1}$.
///
/// If $e_s \geq 2-2^{E-1}$ (the float is normal), the output length is $2^M$.
/// - For [`f32`], this is $2^{23}$, or 8388608.
/// - For [`f64`], this is $2^{52}$, or 4503599627370496.
///
/// If $e_s < 2-2^{E-1}$ (the float is subnormal), the output length is $2^{e_s+2^{E-1}+M-2}$.
/// - For [`f32`], this is $2^{e_s+149}$.
/// - For [`f64`], this is $2^{e_s+1074}$.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if the sci-exponent is less than
/// [`MIN_EXPONENT`](super::basic::floats::PrimitiveFloat::MIN_EXPONENT)` or greater than
/// [`MAX_EXPONENT`](super::basic::floats::PrimitiveFloat::MAX_EXPONENT).
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_primitive_floats_with_sci_exponent;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(
///         exhaustive_primitive_floats_with_sci_exponent::<f32>(0).map(NiceFloat),
///         20
///     ),
///     "[1.0, 1.5, 1.25, 1.75, 1.125, 1.375, 1.625, 1.875, 1.0625, 1.1875, 1.3125, 1.4375, \
///     1.5625, 1.6875, 1.8125, 1.9375, 1.03125, 1.09375, 1.15625, 1.21875, ...]",
/// );
/// assert_eq!(
///     prefix_to_string(
///         exhaustive_primitive_floats_with_sci_exponent::<f32>(4).map(NiceFloat),
///         20
///     ),
///     "[16.0, 24.0, 20.0, 28.0, 18.0, 22.0, 26.0, 30.0, 17.0, 19.0, 21.0, 23.0, 25.0, 27.0, \
///     29.0, 31.0, 16.5, 17.5, 18.5, 19.5, ...]"
/// );
/// assert_eq!(
///     exhaustive_primitive_floats_with_sci_exponent::<f32>(-147).map(NiceFloat).collect_vec(),
///     [6.0e-45, 8.0e-45, 7.0e-45, 1.0e-44].iter().copied().map(NiceFloat).collect_vec()
/// );
/// ```
#[inline]
pub fn exhaustive_primitive_floats_with_sci_exponent<T: PrimitiveFloat>(
    sci_exponent: i64,
) -> ExhaustivePrimitiveFloatsWithExponent<T> {
    ExhaustivePrimitiveFloatsWithExponent(exhaustive_primitive_floats_with_sci_exponent_helper(
        sci_exponent,
    ))
}

#[doc(hidden)]
#[derive(Clone, Debug)]
struct ExhaustivePositiveFinitePrimitiveFloatsGenerator<T: PrimitiveFloat> {
    phantom: PhantomData<*const T>,
}

impl<T: PrimitiveFloat>
    ExhaustiveDependentPairsYsGenerator<i64, T, ExhaustivePrimitiveFloatsWithExponent<T>>
    for ExhaustivePositiveFinitePrimitiveFloatsGenerator<T>
{
    #[inline]
    fn get_ys(&self, &sci_exponent: &i64) -> ExhaustivePrimitiveFloatsWithExponent<T> {
        exhaustive_primitive_floats_with_sci_exponent(sci_exponent)
    }
}

#[inline]
fn exhaustive_positive_finite_primitive_floats_helper<T: PrimitiveFloat>(
) -> ExhaustiveDependentPairs<
    i64,
    T,
    RulerSequence<usize>,
    ExhaustivePositiveFinitePrimitiveFloatsGenerator<T>,
    ExhaustiveSignedRange<i64>,
    ExhaustivePrimitiveFloatsWithExponent<T>,
> {
    exhaustive_dependent_pairs(
        ruler_sequence(),
        exhaustive_signed_inclusive_range(T::MIN_EXPONENT, T::MAX_EXPONENT),
        ExhaustivePositiveFinitePrimitiveFloatsGenerator {
            phantom: PhantomData,
        },
    )
}

/// Generates all finite positive primitive floats.
///
/// This `struct` is created by [`exhaustive_positive_finite_primitive_floats`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct ExhaustivePositiveFinitePrimitiveFloats<T: PrimitiveFloat>(
    ExhaustiveDependentPairs<
        i64,
        T,
        RulerSequence<usize>,
        ExhaustivePositiveFinitePrimitiveFloatsGenerator<T>,
        ExhaustiveSignedRange<i64>,
        ExhaustivePrimitiveFloatsWithExponent<T>,
    >,
);

impl<T: PrimitiveFloat> Iterator for ExhaustivePositiveFinitePrimitiveFloats<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|p| p.1)
    }
}

/// Generates all finite positive primitive floats.
///
/// Positive and negative zero are both excluded.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`positive_finite_primitive_floats_increasing`].
///
/// The output length is $2^M(2^E-1)-1$.
/// - For [`f32`], this is $2^{31}-2^{23}-1$, or 2139095039.
/// - For [`f64`], this is $2^{63}-2^{52}-1$, or 9218868437227405311.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_positive_finite_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_positive_finite_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[1.0, 2.0, 1.5, 0.5, 1.25, 3.0, 1.75, 4.0, 1.125, 2.5, 1.375, 0.75, 1.625, 3.5, 1.875, \
///     0.25, 1.0625, 2.25, 1.1875, 0.625, 1.3125, 2.75, 1.4375, 6.0, 1.5625, 3.25, 1.6875, 0.875, \
///     1.8125, 3.75, 1.9375, 8.0, 1.03125, 2.125, 1.09375, 0.5625, 1.15625, 2.375, 1.21875, 5.0, \
///     1.28125, 2.625, 1.34375, 0.6875, 1.40625, 2.875, 1.46875, 0.375, 1.53125, 3.125, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_positive_finite_primitive_floats<T: PrimitiveFloat>(
) -> ExhaustivePositiveFinitePrimitiveFloats<T> {
    ExhaustivePositiveFinitePrimitiveFloats(exhaustive_positive_finite_primitive_floats_helper())
}

/// Generates all finite negative primitive floats.
///
/// This `struct` is created by [`exhaustive_negative_finite_primitive_floats`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct ExhaustiveNegativeFinitePrimitiveFloats<T: PrimitiveFloat>(
    ExhaustivePositiveFinitePrimitiveFloats<T>,
);

impl<T: PrimitiveFloat> Iterator for ExhaustiveNegativeFinitePrimitiveFloats<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|f| -f)
    }
}

/// Generates all finite negative primitive floats.
///
/// Positive and negative zero are both excluded.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`negative_finite_primitive_floats_increasing`].
///
/// The output length is $2^M(2^E-1)-1$.
/// - For [`f32`], this is $2^{31}-2^{23}-1$, or 2139095039.
/// - For [`f64`], this is $2^{63}-2^{52}-1$, or 9218868437227405311.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_negative_finite_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_negative_finite_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[-1.0, -2.0, -1.5, -0.5, -1.25, -3.0, -1.75, -4.0, -1.125, -2.5, -1.375, -0.75, -1.625, \
///     -3.5, -1.875, -0.25, -1.0625, -2.25, -1.1875, -0.625, -1.3125, -2.75, -1.4375, -6.0, \
///     -1.5625, -3.25, -1.6875, -0.875, -1.8125, -3.75, -1.9375, -8.0, -1.03125, -2.125, \
///     -1.09375, -0.5625, -1.15625, -2.375, -1.21875, -5.0, -1.28125, -2.625, -1.34375, -0.6875, \
///     -1.40625, -2.875, -1.46875, -0.375, -1.53125, -3.125, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_negative_finite_primitive_floats<T: PrimitiveFloat>(
) -> ExhaustiveNegativeFinitePrimitiveFloats<T> {
    ExhaustiveNegativeFinitePrimitiveFloats(exhaustive_positive_finite_primitive_floats())
}

/// Generates all finite nonzero primitive floats.
///
/// This `struct` is created by [`exhaustive_nonzero_finite_primitive_floats`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct ExhaustiveNonzeroFinitePrimitiveFloats<T: PrimitiveFloat> {
    toggle: bool,
    xs: ExhaustivePositiveFinitePrimitiveFloats<T>,
    x: T,
}

impl<T: PrimitiveFloat> Iterator for ExhaustiveNonzeroFinitePrimitiveFloats<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.toggle.not_assign();
        Some(if self.toggle {
            self.x = self.xs.next().unwrap();
            self.x
        } else {
            -self.x
        })
    }
}

/// Generates all finite nonzero primitive floats.
///
/// Positive and negative zero are both excluded.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`nonzero_finite_primitive_floats_increasing`].
///
/// The output length is $2^{M+1}(2^E-1)-2$.
/// - For [`f32`], this is $2^{32}-2^{24}-2$, or 4278190078.
/// - For [`f64`], this is $2^{64}-2^{53}-2$, or 18437736874454810622.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_nonzero_finite_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_nonzero_finite_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[1.0, -1.0, 2.0, -2.0, 1.5, -1.5, 0.5, -0.5, 1.25, -1.25, 3.0, -3.0, 1.75, -1.75, 4.0, \
///     -4.0, 1.125, -1.125, 2.5, -2.5, 1.375, -1.375, 0.75, -0.75, 1.625, -1.625, 3.5, -3.5, \
///     1.875, -1.875, 0.25, -0.25, 1.0625, -1.0625, 2.25, -2.25, 1.1875, -1.1875, 0.625, -0.625, \
///     1.3125, -1.3125, 2.75, -2.75, 1.4375, -1.4375, 6.0, -6.0, 1.5625, -1.5625, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_nonzero_finite_primitive_floats<T: PrimitiveFloat>(
) -> ExhaustiveNonzeroFinitePrimitiveFloats<T> {
    ExhaustiveNonzeroFinitePrimitiveFloats {
        toggle: false,
        xs: exhaustive_positive_finite_primitive_floats(),
        x: T::ZERO,
    }
}

/// Generates all finite primitive floats.
///
/// Positive and negative zero are both included.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`finite_primitive_floats_increasing`].
///
/// The output length is $2^{M+1}(2^E-1)$.
/// - For [`f32`], this is $2^{32}-2^{24}$, or 4278190080.
/// - For [`f64`], this is $2^{64}-2^{53}$, or 18437736874454810624.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::exhaustive::exhaustive_finite_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_finite_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[0.0, -0.0, 1.0, -1.0, 2.0, -2.0, 1.5, -1.5, 0.5, -0.5, 1.25, -1.25, 3.0, -3.0, 1.75, \
///     -1.75, 4.0, -4.0, 1.125, -1.125, 2.5, -2.5, 1.375, -1.375, 0.75, -0.75, 1.625, -1.625, \
///     3.5, -3.5, 1.875, -1.875, 0.25, -0.25, 1.0625, -1.0625, 2.25, -2.25, 1.1875, -1.1875, \
///     0.625, -0.625, 1.3125, -1.3125, 2.75, -2.75, 1.4375, -1.4375, 6.0, -6.0, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_finite_primitive_floats<T: PrimitiveFloat>(
) -> Chain<IntoIter<T>, ExhaustiveNonzeroFinitePrimitiveFloats<T>> {
    vec![T::ZERO, T::NEGATIVE_ZERO]
        .into_iter()
        .chain(exhaustive_nonzero_finite_primitive_floats())
}

/// Generates all positive primitive floats.
///
/// Positive and negative zero are both excluded.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`positive_primitive_floats_increasing`].
///
/// The output length is $2^M(2^E-1)$.
/// - For [`f32`]
/// , this is $2^{31}-2^{23}$, or 2139095040.
/// - For [`f64`]
/// , this is $2^{63}-2^{52}$, or 9218868437227405312.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::exhaustive::exhaustive_positive_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_positive_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[Infinity, 1.0, 2.0, 1.5, 0.5, 1.25, 3.0, 1.75, 4.0, 1.125, 2.5, 1.375, 0.75, 1.625, \
///     3.5, 1.875, 0.25, 1.0625, 2.25, 1.1875, 0.625, 1.3125, 2.75, 1.4375, 6.0, 1.5625, 3.25, \
///     1.6875, 0.875, 1.8125, 3.75, 1.9375, 8.0, 1.03125, 2.125, 1.09375, 0.5625, 1.15625, \
///     2.375, 1.21875, 5.0, 1.28125, 2.625, 1.34375, 0.6875, 1.40625, 2.875, 1.46875, 0.375, \
///     1.53125, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_positive_primitive_floats<T: PrimitiveFloat>(
) -> Chain<Once<T>, ExhaustivePositiveFinitePrimitiveFloats<T>> {
    once(T::POSITIVE_INFINITY).chain(exhaustive_positive_finite_primitive_floats())
}

/// Generates all negative primitive floats.
///
/// Positive and negative zero are both excluded.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`negative_primitive_floats_increasing`].
///
/// The output length is $2^M(2^E-1)$.
/// - For [`f32`], this is $2^{31}-2^{23}$, or 2139095040.
/// - For [`f64`], this is $2^{63}-2^{52}$, or 9218868437227405312.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::exhaustive::exhaustive_negative_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_negative_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[-Infinity, -1.0, -2.0, -1.5, -0.5, -1.25, -3.0, -1.75, -4.0, -1.125, -2.5, -1.375, \
///     -0.75, -1.625, -3.5, -1.875, -0.25, -1.0625, -2.25, -1.1875, -0.625, -1.3125, -2.75, \
///     -1.4375, -6.0, -1.5625, -3.25, -1.6875, -0.875, -1.8125, -3.75, -1.9375, -8.0, -1.03125, \
///     -2.125, -1.09375, -0.5625, -1.15625, -2.375, -1.21875, -5.0, -1.28125, -2.625, -1.34375, \
///     -0.6875, -1.40625, -2.875, -1.46875, -0.375, -1.53125, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_negative_primitive_floats<T: PrimitiveFloat>(
) -> Chain<Once<T>, ExhaustiveNegativeFinitePrimitiveFloats<T>> {
    once(T::NEGATIVE_INFINITY).chain(exhaustive_negative_finite_primitive_floats())
}

/// Generates all nonzero primitive floats.
///
/// Positive and negative zero are both excluded. NaN is excluded as well.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats in
/// ascending order instead, use [`nonzero_primitive_floats_increasing`].
///
/// The output length is $2^{M+1}(2^E-1)$.
/// - For [`f32`], this is $2^{32}-2^{24}$, or 4278190080.
/// - For [`f64`], this is $2^{64}-2^{53}$, or 18437736874454810624.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::exhaustive::exhaustive_nonzero_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_nonzero_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[Infinity, -Infinity, 1.0, -1.0, 2.0, -2.0, 1.5, -1.5, 0.5, -0.5, 1.25, -1.25, 3.0, \
///     -3.0, 1.75, -1.75, 4.0, -4.0, 1.125, -1.125, 2.5, -2.5, 1.375, -1.375, 0.75, -0.75, \
///     1.625, -1.625, 3.5, -3.5, 1.875, -1.875, 0.25, -0.25, 1.0625, -1.0625, 2.25, -2.25, \
///     1.1875, -1.1875, 0.625, -0.625, 1.3125, -1.3125, 2.75, -2.75, 1.4375, -1.4375, 6.0, -6.0, \
///     ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_nonzero_primitive_floats<T: PrimitiveFloat>(
) -> Chain<IntoIter<T>, ExhaustiveNonzeroFinitePrimitiveFloats<T>> {
    vec![T::POSITIVE_INFINITY, T::NEGATIVE_INFINITY]
        .into_iter()
        .chain(exhaustive_nonzero_finite_primitive_floats())
}

/// Generates all primitive floats.
///
/// Positive and negative zero are both included.
///
/// Roughly speaking, the simplest floats are generated first. If you want to generate the floats
/// (except `NaN`) in ascending order instead, use [`primitive_floats_increasing`].
///
/// The output length is $2^{M+1}(2^E-1)+2$.
/// - For [`f32`], this is $2^{32}-2^{24}+2$, or 4278190082.
/// - For [`f64`], this is $2^{64}-2^{53}+2$, or 18437736874454810626.
///
/// # Complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::exhaustive::exhaustive_primitive_floats;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(
///     prefix_to_string(exhaustive_primitive_floats::<f32>().map(NiceFloat), 50),
///     "[NaN, Infinity, -Infinity, 0.0, -0.0, 1.0, -1.0, 2.0, -2.0, 1.5, -1.5, 0.5, -0.5, 1.25, \
///     -1.25, 3.0, -3.0, 1.75, -1.75, 4.0, -4.0, 1.125, -1.125, 2.5, -2.5, 1.375, -1.375, 0.75, \
///     -0.75, 1.625, -1.625, 3.5, -3.5, 1.875, -1.875, 0.25, -0.25, 1.0625, -1.0625, 2.25, \
///     -2.25, 1.1875, -1.1875, 0.625, -0.625, 1.3125, -1.3125, 2.75, -2.75, 1.4375, ...]"
/// );
/// ```
#[inline]
pub fn exhaustive_primitive_floats<T: PrimitiveFloat>(
) -> Chain<IntoIter<T>, ExhaustiveNonzeroFinitePrimitiveFloats<T>> {
    vec![T::NAN, T::POSITIVE_INFINITY, T::NEGATIVE_INFINITY, T::ZERO, T::NEGATIVE_ZERO]
        .into_iter()
        .chain(exhaustive_nonzero_finite_primitive_floats())
}

pub_test! {exhaustive_primitive_floats_with_sci_exponent_and_precision_in_range<T: PrimitiveFloat>(
    a: T,
    b: T,
    sci_exponent: i64,
    precision: u64
) -> ConstantPrecisionPrimitiveFloats<T> {
    assert!(a.is_finite());
    assert!(b.is_finite());
    assert!(a > T::ZERO);
    assert!(b > T::ZERO);
    assert!(sci_exponent >= T::MIN_EXPONENT);
    assert!(sci_exponent <= T::MAX_EXPONENT);
    let (am, ae) = a.raw_mantissa_and_exponent();
    let (bm, be) = b.raw_mantissa_and_exponent();
    let ae_actual_sci_exponent = if ae == 0 {
        i64::wrapping_from(am.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(ae) - T::MAX_EXPONENT
    };
    let be_actual_sci_exponent = if be == 0 {
        i64::wrapping_from(bm.significant_bits()) + T::MIN_EXPONENT - 1
    } else {
        i64::wrapping_from(be) - T::MAX_EXPONENT
    };
    assert_eq!(ae_actual_sci_exponent, sci_exponent);
    assert_eq!(be_actual_sci_exponent, sci_exponent);
    assert!(am <= bm);
    assert_ne!(precision, 0);
    let max_precision = T::max_precision_for_sci_exponent(sci_exponent);
    assert!(precision <= max_precision);
    if precision == 1 && am == 0 {
        return ConstantPrecisionPrimitiveFloats {
            phantom: PhantomData,
            n: a.to_bits(),
            increment: 0,
            i: 0,
            count: 1,
        };
    }
    let trailing_zeros = max_precision - precision;
    let increment = u64::power_of_2(trailing_zeros + 1);
    let mut start_mantissa = am.round_to_multiple_of_power_of_2(trailing_zeros, RoundingMode::Up);
    if !start_mantissa.get_bit(trailing_zeros) {
        start_mantissa.set_bit(trailing_zeros);
    }
    if start_mantissa > bm {
        return ConstantPrecisionPrimitiveFloats::default();
    }
    let mut end_mantissa = bm.round_to_multiple_of_power_of_2(trailing_zeros, RoundingMode::Down);
    if !end_mantissa.get_bit(trailing_zeros) {
        let adjust = u64::power_of_2(trailing_zeros);
        if adjust > end_mantissa {
            return ConstantPrecisionPrimitiveFloats::default();
        }
        end_mantissa -= adjust;
    }
    assert!(start_mantissa <= end_mantissa);
    let count = ((end_mantissa - start_mantissa) >> (trailing_zeros + 1)) + 1;
    let first = T::from_raw_mantissa_and_exponent(start_mantissa, ae).to_bits();
    ConstantPrecisionPrimitiveFloats {
        phantom: PhantomData,
        n: first,
        increment,
        i: 0,
        count,
    }
}}

#[derive(Clone, Debug)]
struct PrimitiveFloatsWithExponentInRangeGenerator<T: PrimitiveFloat> {
    a: T,
    b: T,
    sci_exponent: i64,
    phantom: PhantomData<*const T>,
}

impl<T: PrimitiveFloat>
    ExhaustiveDependentPairsYsGenerator<u64, T, ConstantPrecisionPrimitiveFloats<T>>
    for PrimitiveFloatsWithExponentInRangeGenerator<T>
{
    #[inline]
    fn get_ys(&self, &precision: &u64) -> ConstantPrecisionPrimitiveFloats<T> {
        exhaustive_primitive_floats_with_sci_exponent_and_precision_in_range(
            self.a,
            self.b,
            self.sci_exponent,
            precision,
        )
    }
}

#[inline]
fn exhaustive_primitive_floats_with_sci_exponent_in_range_helper<T: PrimitiveFloat>(
    a: T,
    b: T,
    sci_exponent: i64,
) -> LexDependentPairs<
    u64,
    T,
    PrimitiveFloatsWithExponentInRangeGenerator<T>,
    PrimitiveIntIncreasingRange<u64>,
    ConstantPrecisionPrimitiveFloats<T>,
> {
    lex_dependent_pairs(
        primitive_int_increasing_inclusive_range(
            1,
            T::max_precision_for_sci_exponent(sci_exponent),
        ),
        PrimitiveFloatsWithExponentInRangeGenerator {
            a,
            b,
            sci_exponent,
            phantom: PhantomData,
        },
    )
}
More examples
Hide additional examples
src/num/random/mod.rs (line 1375)
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
    fn next(&mut self) -> Option<T> {
        let sci_exponent = self.sci_exponents.next().unwrap();
        let mean_precision_n = self.mean_precision_n;
        let mean_precision_d = self.mean_precision_d;
        let seed = self.seed;
        let precisions = self.range_map.entry(sci_exponent).or_insert_with(move || {
            geometric_random_unsigned_inclusive_range(
                seed.fork(&sci_exponent.to_string()),
                1,
                T::max_precision_for_sci_exponent(sci_exponent),
                mean_precision_n,
                mean_precision_d,
            )
        });
        let precision = precisions.next().unwrap();
        let mantissa = if precision == 1 {
            1
        } else {
            // e.g. if precision is 4, generate odd values from 1001 through 1111, inclusive
            let x = self.ranges.next_in_range(
                u64::power_of_2(precision - 2),
                u64::power_of_2(precision - 1),
            );
            (x << 1) | 1
        };
        T::from_integer_mantissa_and_exponent(
            mantissa,
            sci_exponent - i64::wrapping_from(precision) + 1,
        )
    }
}

/// Generates finite positive primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the mean absolute sci-exponent and precision by passing the numerators
/// and denominators of their means.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Positive zero is generated; negative zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_positive_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_positive_finite_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1)
///                 .map(NiceFloat),
///         20
///     ),
///     "[0.80126953, 0.0000013709068, 0.015609741, 0.98552704, 65536.0, 0.008257866, \
///     0.017333984, 2.25, 7.7089844, 0.00004425831, 0.40625, 24576.0, 37249.0, 1.1991882, \
///     32.085938, 0.4375, 0.0012359619, 1536.0, 0.22912993, 0.0015716553, ...]"
/// );
/// ```
pub fn special_random_positive_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
) -> SpecialRandomPositiveFiniteFloats<T> {
    assert_ne!(mean_precision_denominator, 0);
    assert!(mean_precision_numerator > mean_precision_denominator);
    SpecialRandomPositiveFiniteFloats {
        seed: seed.fork("precisions"),
        sci_exponents: geometric_random_signed_inclusive_range(
            EXAMPLE_SEED.fork("exponents"),
            T::MIN_EXPONENT,
            T::MAX_EXPONENT,
            mean_sci_exponent_numerator,
            mean_sci_exponent_denominator,
        ),
        range_map: HashMap::new(),
        ranges: variable_range_generator(seed.fork("ranges")),
        mean_precision_n: mean_precision_numerator,
        mean_precision_d: mean_precision_denominator,
        phantom: PhantomData,
    }
}

/// Generates negative finite primitive floats.
///
/// This `struct` is created by [`special_random_negative_finite_primitive_floats`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct SpecialRandomNegativeFiniteFloats<T: PrimitiveFloat>(
    SpecialRandomPositiveFiniteFloats<T>,
);

impl<T: PrimitiveFloat> Iterator for SpecialRandomNegativeFiniteFloats<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.0.next().map(|f| -f)
    }
}

/// Generates finite negative primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the mean absolute sci-exponent and precision by passing the numerators
/// and denominators of their means.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Negative zero is generated; positive zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_negative_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_negative_finite_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1)
///                 .map(NiceFloat),
///         20
///     ),
///     "[-0.80126953, -0.0000013709068, -0.015609741, -0.98552704, -65536.0, -0.008257866, \
///     -0.017333984, -2.25, -7.7089844, -0.00004425831, -0.40625, -24576.0, -37249.0, \
///     -1.1991882, -32.085938, -0.4375, -0.0012359619, -1536.0, -0.22912993, -0.0015716553, ...]"
/// );
/// ```
#[inline]
pub fn special_random_negative_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
) -> SpecialRandomNegativeFiniteFloats<T> {
    SpecialRandomNegativeFiniteFloats(special_random_positive_finite_primitive_floats(
        seed,
        mean_sci_exponent_numerator,
        mean_sci_exponent_denominator,
        mean_precision_numerator,
        mean_precision_denominator,
    ))
}

/// Generates nonzero finite primitive floats.
///
/// This `struct` is created by [`special_random_nonzero_finite_primitive_floats`]; see its
/// documentation for more.
#[derive(Clone, Debug)]
pub struct SpecialRandomNonzeroFiniteFloats<T: PrimitiveFloat> {
    bs: RandomBools,
    xs: SpecialRandomPositiveFiniteFloats<T>,
}

impl<T: PrimitiveFloat> Iterator for SpecialRandomNonzeroFiniteFloats<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        let x = self.xs.next().unwrap();
        Some(if self.bs.next().unwrap() { x } else { -x })
    }
}

/// Generates finite nonzero primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the mean absolute sci-exponent and precision by passing the numerators
/// and denominators of their means.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Neither positive not negative zero is generated. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_nonzero_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_nonzero_finite_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1)
///                 .map(NiceFloat),
///         20
///     ),
///     "[-0.6328125, -9.536743e-7, -0.013671875, 0.6875, -70208.0, 0.01550293, -0.028625488, \
///     -3.3095703, -5.775879, 0.000034958124, 0.4375, 31678.0, -49152.0, -1.0, 49.885254, \
///     -0.40625, -0.0015869141, -1889.5625, -0.14140439, -0.001449585, ...]"
/// );
/// ```
#[inline]
pub fn special_random_nonzero_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
) -> SpecialRandomNonzeroFiniteFloats<T> {
    SpecialRandomNonzeroFiniteFloats {
        bs: random_bools(seed.fork("bs")),
        xs: special_random_positive_finite_primitive_floats(
            seed.fork("xs"),
            mean_sci_exponent_numerator,
            mean_sci_exponent_denominator,
            mean_precision_numerator,
            mean_precision_denominator,
        ),
    }
}

/// Generates finite primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that a zero will be
/// generated. You can also specify the mean absolute sci-exponent and precision by passing the
/// numerators and denominators of their means of the nonzero floats.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Positive and negative zero are both generated. `NaN` is not.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_finite_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_finite_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1, 1, 10)
///                 .map(NiceFloat),
///         20
///     ),
///     "[0.65625, 0.0000014255784, 0.013183594, 0.0, -0.8125, -74240.0, -0.0078125, -0.03060913, \
///     3.331552, 4.75, -0.000038146973, -0.3125, -27136.0, -0.0, -59392.0, -1.75, -41.1875, 0.0, \
///     0.30940247, -0.0009765625, ...]"
/// );
/// ```
#[inline]
pub fn special_random_finite_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_zero_p_numerator: u64,
    mean_zero_p_denominator: u64,
) -> WithSpecialValues<SpecialRandomNonzeroFiniteFloats<T>> {
    with_special_values(
        seed,
        vec![T::ZERO, T::NEGATIVE_ZERO],
        mean_zero_p_numerator,
        mean_zero_p_denominator,
        &|seed_2| {
            special_random_nonzero_finite_primitive_floats(
                seed_2,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            )
        },
    )
}

/// Generates positive primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that positive infinity
/// will be generated. You can also specify the mean absolute sci-exponent and precision by passing
/// the numerators and denominators of their means of the finite floats.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Positive zero is generated; negative zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_positive_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_positive_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1, 1, 10)
///                 .map(NiceFloat),
///         20
///     ),
///     "[0.6328125, 9.536743e-7, 0.013671875, Infinity, 0.6875, 70208.0, 0.01550293, \
///     0.028625488, 3.3095703, 5.775879, 0.000034958124, 0.4375, 31678.0, Infinity, 49152.0, \
///     1.0, 49.885254, Infinity, 0.40625, 0.0015869141, ...]"
/// );
/// ```
#[inline]
pub fn special_random_positive_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_special_p_numerator: u64,
    mean_special_p_denominator: u64,
) -> WithSpecialValue<SpecialRandomPositiveFiniteFloats<T>> {
    with_special_value(
        seed,
        T::POSITIVE_INFINITY,
        mean_special_p_numerator,
        mean_special_p_denominator,
        &|seed_2| {
            special_random_positive_finite_primitive_floats(
                seed_2,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            )
        },
    )
}

/// Generates negative primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that negative infinity
/// will be generated. You can also specify the mean absolute sci-exponent and precision by passing
/// the numerators and denominators of their means of the finite floats.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Negative zero is generated; positive zero is not. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_negative_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_negative_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1, 1, 10)
///                 .map(NiceFloat),
///         20
///     ),
///     "[-0.6328125, -9.536743e-7, -0.013671875, -Infinity, -0.6875, -70208.0, -0.01550293, \
///     -0.028625488, -3.3095703, -5.775879, -0.000034958124, -0.4375, -31678.0, -Infinity, \
///     -49152.0, -1.0, -49.885254, -Infinity, -0.40625, -0.0015869141, ...]"
/// );
/// ```
#[inline]
pub fn special_random_negative_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_special_p_numerator: u64,
    mean_special_p_denominator: u64,
) -> WithSpecialValue<SpecialRandomNegativeFiniteFloats<T>> {
    with_special_value(
        seed,
        T::NEGATIVE_INFINITY,
        mean_special_p_numerator,
        mean_special_p_denominator,
        &|seed_2| {
            special_random_negative_finite_primitive_floats(
                seed_2,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            )
        },
    )
}

/// Generates nonzero primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that an infinity will
/// be generated. You can also specify the mean absolute sci-exponent and precision by passing the
/// numerators and denominators of their means of the finite floats.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// Neither negative not positive zero is generated. `NaN` is not generated either.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_nonzero_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_nonzero_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1, 1, 10)
///                 .map(NiceFloat),
///         20
///     ),
///     "[0.65625, 0.0000014255784, 0.013183594, Infinity, -0.8125, -74240.0, -0.0078125, \
///     -0.03060913, 3.331552, 4.75, -0.000038146973, -0.3125, -27136.0, -Infinity, -59392.0, \
///     -1.75, -41.1875, Infinity, 0.30940247, -0.0009765625, ...]"
/// );
/// ```
#[inline]
pub fn special_random_nonzero_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_special_p_numerator: u64,
    mean_special_p_denominator: u64,
) -> WithSpecialValues<SpecialRandomNonzeroFiniteFloats<T>> {
    with_special_values(
        seed,
        vec![T::POSITIVE_INFINITY, T::NEGATIVE_INFINITY],
        mean_special_p_numerator,
        mean_special_p_denominator,
        &|seed_2| {
            special_random_nonzero_finite_primitive_floats(
                seed_2,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            )
        },
    )
}

/// Generates primitive floats.
///
/// Simpler floats (those with a lower absolute sci-exponent or precision) are more likely to be
/// chosen. You can specify the numerator and denominator of the probability that zero, infinity,
/// or NaN will be generated. You can also specify the mean absolute sci-exponent and precision by
/// passing the numerators and denominators of their means of the finite floats.
///
/// But note that the specified means are only approximate, since the distributions we are sampling
/// are truncated geometric, and their exact means are somewhat annoying to deal with. The
/// practical implications are that
/// - The actual means are slightly lower than the specified means.
/// - However, increasing the specified means increases the actual means, so this still works as a
///   mechanism for controlling the sci-exponent and precision.
/// - The specified sci-exponent mean must be greater than 0 and the precision mean greater than 2,
///   but they may be as high as you like.
///
/// The output length is infinite.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::iterators::prefix_to_string;
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
/// use malachite_base::num::random::special_random_primitive_floats;
/// use malachite_base::random::EXAMPLE_SEED;
///
/// assert_eq!(
///     prefix_to_string(
///         special_random_primitive_floats::<f32>(EXAMPLE_SEED, 10, 1, 10, 1, 1, 10)
///                 .map(NiceFloat),
///         20
///     ),
///     "[0.65625, 0.0000014255784, 0.013183594, Infinity, -0.8125, -74240.0, -0.0078125, \
///     -0.03060913, 3.331552, 4.75, -0.000038146973, -0.3125, -27136.0, Infinity, -59392.0, \
///     -1.75, -41.1875, Infinity, 0.30940247, -0.0009765625, ...]"
/// );
/// ```
#[inline]
pub fn special_random_primitive_floats<T: PrimitiveFloat>(
    seed: Seed,
    mean_sci_exponent_numerator: u64,
    mean_sci_exponent_denominator: u64,
    mean_precision_numerator: u64,
    mean_precision_denominator: u64,
    mean_special_p_numerator: u64,
    mean_special_p_denominator: u64,
) -> WithSpecialValues<SpecialRandomNonzeroFiniteFloats<T>> {
    with_special_values(
        seed,
        vec![T::ZERO, T::NEGATIVE_ZERO, T::POSITIVE_INFINITY, T::NEGATIVE_INFINITY, T::NAN],
        mean_special_p_numerator,
        mean_special_p_denominator,
        &|seed_2| {
            special_random_nonzero_finite_primitive_floats(
                seed_2,
                mean_sci_exponent_numerator,
                mean_sci_exponent_denominator,
                mean_precision_numerator,
                mean_precision_denominator,
            )
        },
    )
}

// normalized sci_exponent and raw mantissas in input, adjusted sci_exponent and mantissas in output
fn mantissas_inclusive<T: PrimitiveFloat>(
    mut sci_exponent: i64,
    mut am: u64,
    mut bm: u64,
    precision: u64,
) -> Option<(i64, u64, u64)> {
    assert_ne!(precision, 0);
    let p: u64 = if sci_exponent < T::MIN_NORMAL_EXPONENT {
        let ab = am.significant_bits();
        let bb = bm.significant_bits();
        assert_eq!(ab, bb);
        ab - precision
    } else {
        am.set_bit(T::MANTISSA_WIDTH);
        bm.set_bit(T::MANTISSA_WIDTH);
        T::MANTISSA_WIDTH + 1 - precision
    };
    let mut lo = am.shr_round(p, RoundingMode::Up);
    if lo.even() {
        lo += 1;
    }
    let mut hi = bm.shr_round(p, RoundingMode::Down);
    if hi == 0 {
        return None;
    } else if hi.even() {
        hi -= 1;
    }
    if sci_exponent >= T::MIN_NORMAL_EXPONENT {
        sci_exponent -= i64::wrapping_from(T::MANTISSA_WIDTH);
    }
    sci_exponent += i64::wrapping_from(p);
    if lo > hi {
        None
    } else {
        Some((sci_exponent, lo >> 1, hi >> 1))
    }
}

#[doc(hidden)]
#[derive(Clone, Debug)]
pub struct SpecialRandomPositiveFiniteFloatInclusiveRange<T: PrimitiveFloat> {
    phantom: PhantomData<*const T>,
    am: u64, // raw mantissa
    bm: u64,
    ae: i64, // sci_exponent
    be: i64,
    sci_exponents: GeometricRandomSignedRange<i64>,
    precision_range_map: HashMap<i64, Vec<(i64, u64, u64)>>,
    precision_indices: GeometricRandomNaturalValues<usize>,
    ranges: VariableRangeGenerator,
}

impl<T: PrimitiveFloat> Iterator for SpecialRandomPositiveFiniteFloatInclusiveRange<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        let sci_exponent = self.sci_exponents.next().unwrap();
        let ae = self.ae;
        let be = self.be;
        let am = self.am;
        let bm = self.bm;
        let precision_ranges = self
            .precision_range_map
            .entry(sci_exponent)
            .or_insert_with(|| {
                let am = if sci_exponent == ae {
                    am
                } else {
                    T::from_integer_mantissa_and_exponent(1, sci_exponent)
                        .unwrap()
                        .raw_mantissa()
                };
                let bm = if sci_exponent == be {
                    bm
                } else {
                    T::from_integer_mantissa_and_exponent(1, sci_exponent + 1)
                        .unwrap()
                        .next_lower()
                        .raw_mantissa()
                };
                (1..=T::max_precision_for_sci_exponent(sci_exponent))
                    .filter_map(|p| mantissas_inclusive::<T>(sci_exponent, am, bm, p))
                    .collect_vec()
            });
        assert!(!precision_ranges.is_empty());
        let i = self.precision_indices.next().unwrap() % precision_ranges.len();
        let t = precision_ranges[i];
        let mantissa = (self.ranges.next_in_inclusive_range(t.1, t.2) << 1) | 1;
        Some(T::from_integer_mantissa_and_exponent(mantissa, t.0).unwrap())
    }

Implementations on Foreign Types§

Implementors§