pub struct Basis2<S> { /* private fields */ }Expand description
A two-dimensional rotation matrix.
The matrix is guaranteed to be orthogonal, so some operations can be
implemented more efficiently than the implementations for math::Matrix2. To
enforce orthogonality at the type level the operations have been restricted
to a subset of those implemented on Matrix2.
§Example
Suppose we want to rotate a vector that lies in the x-y plane by some angle. We can accomplish this quite easily with a two-dimensional rotation matrix:
use cgmath::Rad;
use cgmath::Vector2;
use cgmath::{Matrix, Matrix2};
use cgmath::{Rotation, Rotation2, Basis2};
use cgmath::UlpsEq;
use std::f64;
// For simplicity, we will rotate the unit x vector to the unit y vector --
// so the angle is 90 degrees, or π/2.
let unit_x: Vector2<f64> = Vector2::unit_x();
let rot: Basis2<f64> = Rotation2::from_angle(Rad(0.5f64 * f64::consts::PI));
// Rotate the vector using the two-dimensional rotation matrix:
let unit_y = rot.rotate_vector(unit_x);
// Since sin(π/2) may not be exactly zero due to rounding errors, we can
// use approx's assert_ulps_eq!() feature to show that it is close enough.
// assert_ulps_eq!(&unit_y, &Vector2::unit_y()); // TODO: Figure out how to use this
// This is exactly equivalent to using the raw matrix itself:
let unit_y2: Matrix2<_> = rot.into();
let unit_y2 = unit_y2 * unit_x;
assert_eq!(unit_y2, unit_y);
// Note that we can also concatenate rotations:
let rot_half: Basis2<f64> = Rotation2::from_angle(Rad(0.25f64 * f64::consts::PI));
let unit_y3 = (rot_half * rot_half).rotate_vector(unit_x);
// assert_ulps_eq!(&unit_y3, &unit_y2); // TODO: Figure out how to use thisImplementations§
Trait Implementations§
Source§impl<S> AbsDiffEq for Basis2<S>where
S: BaseFloat,
impl<S> AbsDiffEq for Basis2<S>where
S: BaseFloat,
Source§fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
fn default_epsilon() -> <S as AbsDiffEq>::Epsilon
The default tolerance to use when testing values that are close together. Read more
Source§fn abs_diff_eq(
&self,
other: &Basis2<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
) -> bool
fn abs_diff_eq( &self, other: &Basis2<S>, epsilon: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses the absolute difference to compute the approximate
equality of two numbers.
Source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
The inverse of
AbsDiffEq::abs_diff_eq.Source§impl<S> RelativeEq for Basis2<S>where
S: BaseFloat,
impl<S> RelativeEq for Basis2<S>where
S: BaseFloat,
Source§fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
fn default_max_relative() -> <S as AbsDiffEq>::Epsilon
The default relative tolerance for testing values that are far-apart. Read more
Source§fn relative_eq(
&self,
other: &Basis2<S>,
epsilon: <S as AbsDiffEq>::Epsilon,
max_relative: <S as AbsDiffEq>::Epsilon,
) -> bool
fn relative_eq( &self, other: &Basis2<S>, epsilon: <S as AbsDiffEq>::Epsilon, max_relative: <S as AbsDiffEq>::Epsilon, ) -> bool
A test for equality that uses a relative comparison if the values are far apart.
Source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
The inverse of
RelativeEq::relative_eq.Source§impl<S> Rotation for Basis2<S>where
S: BaseFloat,
impl<S> Rotation for Basis2<S>where
S: BaseFloat,
type Space = Point2<S>
Source§fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S>
fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S>
Create a rotation to a given direction with an ‘up’ vector.
Source§fn between_vectors(a: Vector2<S>, b: Vector2<S>) -> Basis2<S>
fn between_vectors(a: Vector2<S>, b: Vector2<S>) -> Basis2<S>
Create a shortest rotation to transform vector ‘a’ into ‘b’.
Both given vectors are assumed to have unit length.
Source§fn rotate_vector(&self, vec: Vector2<S>) -> Vector2<S>
fn rotate_vector(&self, vec: Vector2<S>) -> Vector2<S>
Rotate a vector using this rotation.
Source§fn invert(&self) -> Basis2<S>
fn invert(&self) -> Basis2<S>
Create a new rotation which “un-does” this rotation. That is,
r * r.invert() is the identity.Source§fn rotate_point(&self, point: Self::Space) -> Self::Space
fn rotate_point(&self, point: Self::Space) -> Self::Space
Rotate a point using this rotation, by converting it to its
representation as a vector.
Source§impl<S> UlpsEq for Basis2<S>where
S: BaseFloat,
impl<S> UlpsEq for Basis2<S>where
S: BaseFloat,
Source§fn default_max_ulps() -> u32
fn default_max_ulps() -> u32
The default ULPs to tolerate when testing values that are far-apart. Read more
impl<S> Copy for Basis2<S>where
S: Copy,
impl<S> StructuralPartialEq for Basis2<S>
Auto Trait Implementations§
impl<S> Freeze for Basis2<S>where
S: Freeze,
impl<S> RefUnwindSafe for Basis2<S>where
S: RefUnwindSafe,
impl<S> Send for Basis2<S>where
S: Send,
impl<S> Sync for Basis2<S>where
S: Sync,
impl<S> Unpin for Basis2<S>where
S: Unpin,
impl<S> UnwindSafe for Basis2<S>where
S: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more