Crate llm_models

Source
Expand description

§llm_models: Load and download LLM models, metadata, and tokenizers

API Documentation

The llm_models crate is a workspace member of the llm_client project.

§Features

  • GGUFs from local storage or Hugging Face
    • Parses model metadata from GGUF file
    • Includes limited support for tokenizer from GGUF file
    • Also supports loading Metadata and Tokenizer from their respective files
  • API models from OpenAI, Anthropic, and Perplexity
  • Tokenizer abstraction for Hugging Face’s Tokenizer and Tiktoken

§LocalLlmModel

Everything you need for GGUF models. The GgufLoader wraps the loaders for convenience. All loaders return a LocalLlmModel which contains the tokenizer, metadata, chat template, and anything that can be extracted from the GGUF.

§GgufPresetLoader

  • Presets for popular models like Llama 3, Phi, Mistral/Mixtral, and more
  • Loads the best quantized model by calculating the largest quant that will fit in your VRAM
use llm_models::*;
let model: LocalLlmModel = GgufLoader::default()
    .llama3_1_8b_instruct()
    .preset_with_available_vram_gb(48) // Load the largest quant that will fit in your vram
    .load().unwrap();

§GgufHfLoader

GGUF models from Hugging Face.

use llm_models::*;
let model: LocalLlmModel = GgufLoader::default()
    .hf_quant_file_url("https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q8_0.gguf")
    .load().unwrap();

§GgufLocalLoader

GGUF models from local storage.

use llm_models::*;
let model: LocalLlmModel = GgufLoader::default()
    .local_quant_file_path("/root/.cache/huggingface/hub/models--bartowski--Meta-Llama-3.1-8B-Instruct-GGUF/blobs/9da71c45c90a821809821244d4971e5e5dfad7eb091f0b8ff0546392393b6283")
    .load().unwrap();

§ApiLlmModel

  • Supports OpenAI, Anthropic, Perplexity, and adding your own API models
  • Supports prompting, tokenization, and price estimation
use llm_models::*;
let model = ApiLlmModel::gpt_4_o();
assert_eq!(model.model_base.model_id, "gpt-4o");
assert_eq!(model.model_base.model_ctx_size, 128000);
assert_eq!(model.model_base.inference_ctx_size, 4096);
assert_eq!(model.cost_per_m_in_tokens, 5.00);
assert_eq!(model.cost_per_m_out_tokens, 15.00);
assert_eq!(model.tokens_per_message, 3);
assert_eq!(model.tokens_per_name, Some(1));

§LlmTokenizer

use llm_models::*;
// Get a Tiktoken tokenizer
let tok = LlmTokenizer::new_tiktoken("gpt-4o");

// From local path
let tok = LlmTokenizer::new_from_tokenizer_json("path/to/tokenizer.json");

// From repo (requires Hugging Face token)
// let tok = LlmTokenizer::new_from_hf_repo(hf_token, "meta-llama/Meta-Llama-3-8B-Instruct");

§Setter Traits

  • All setter traits are public, so you can integrate into your own projects if you wish
  • Examples include: OpenAiModelTrait, GgufLoaderTrait, AnthropicModelTrait, and HfTokenTrait for loading models

Re-exports§

pub use api_model::anthropic::AnthropicModelTrait;
pub use api_model::openai::OpenAiModelTrait;
pub use api_model::perplexity::PerplexityModelTrait;
pub use api_model::ApiLlmModel;
pub use local_model::chat_template::LlmChatTemplate;
pub use local_model::gguf::loaders::preset::GgufPresetLoader;
pub use local_model::gguf::preset::GgufPresetTrait;
pub use local_model::gguf::GgufLoader;
pub use local_model::gguf::GgufLoaderTrait;
pub use local_model::hf_loader::HfTokenTrait;
pub use local_model::metadata::LocalLlmMetadata;
pub use local_model::LocalLlmModel;
pub use tokenizer::LlmTokenizer;

Modules§

api_model
local_model
tokenizer

Structs§

LlmModelBase