llama_core/
embeddings.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
//! Define APIs for computing embeddings.

use crate::{
    error::{BackendError, LlamaCoreError},
    metadata::ggml::GgmlMetadata,
    running_mode,
    utils::{get_output_buffer, get_token_info_by_graph},
    Graph, RunningMode, CHAT_GRAPHS, EMBEDDING_GRAPHS, OUTPUT_TENSOR,
};
use endpoints::{
    common::Usage,
    embeddings::{EmbeddingObject, EmbeddingRequest, EmbeddingsResponse, InputText},
};
use serde::{Deserialize, Serialize};
use text_splitter::{MarkdownSplitter, TextSplitter};
use tiktoken_rs::cl100k_base;

/// Compute embeddings for the given input.
///
/// # Argument
///
/// * `embedding_request` - The embedding request.
///
/// # Returns
///
/// The embeddings response.
pub async fn embeddings(
    embedding_request: &EmbeddingRequest,
) -> Result<EmbeddingsResponse, LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Computing embeddings");

    let running_mode = running_mode()?;
    if running_mode == RunningMode::Chat {
        let err_msg = format!(
            "Computing embeddings is not supported in the {} mode.",
            running_mode
        );

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", &err_msg);

        return Err(LlamaCoreError::Operation(err_msg));
    }

    let model_name = &embedding_request.model;

    // For general embedding scenario, the embedding model is the same as the chat model.
    // For RAG scenario, the embedding model is different from the chat model.
    let embedding_graphs = match EMBEDDING_GRAPHS.get() {
        Some(embedding_graphs) => embedding_graphs,
        None => match CHAT_GRAPHS.get() {
            Some(chat_graphs) => chat_graphs,
            None => {
                let err_msg = "No embedding model is available.";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", err_msg);

                return Err(LlamaCoreError::Operation(err_msg.into()));
            }
        },
    };

    let mut embedding_graphs = embedding_graphs.lock().map_err(|e| {
        let err_msg = format!("Fail to acquire the lock of `EMBEDDING_GRAPHS`. {}", e);

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", &err_msg);

        LlamaCoreError::Operation(err_msg)
    })?;

    let graph = match model_name {
        Some(model_name) if embedding_graphs.contains_key(model_name) => {
            embedding_graphs.get_mut(model_name).unwrap()
        }
        _ => match embedding_graphs.iter_mut().next() {
            Some((_, graph)) => graph,
            None => {
                let err_msg = "Not found available model in the embedding graphs.";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                return Err(LlamaCoreError::Operation(err_msg.into()));
            }
        },
    };

    // check if the `embedding` option of metadata is enabled
    if !graph.metadata.embeddings {
        graph.metadata.embeddings = true;
        graph.update_metadata()?;
    }

    // compute embeddings
    let (data, usage) = match &embedding_request.input {
        InputText::String(text) => compute_embeddings(graph, &[text.to_owned()])?,
        InputText::ArrayOfStrings(texts) => compute_embeddings(graph, texts.as_slice())?,
        InputText::ArrayOfTokens(tokens) => {
            let texts: Vec<String> = tokens.iter().map(|t| t.to_string()).collect();
            compute_embeddings(graph, texts.as_slice())?
        }
        InputText::ArrayOfTokenArrays(token_arrays) => {
            let texts: Vec<String> = token_arrays
                .iter()
                .map(|tokens| {
                    tokens
                        .iter()
                        .map(|t| t.to_string())
                        .collect::<Vec<String>>()
                        .join(" ")
                })
                .collect();
            compute_embeddings(graph, texts.as_slice())?
        }
    };

    let embedding_reponse = EmbeddingsResponse {
        object: String::from("list"),
        data,
        model: graph.name().to_owned(),
        usage,
    };

    #[cfg(feature = "logging")]
    info!(target: "stdout", "Embeddings computed successfully.");

    Ok(embedding_reponse)
}

fn compute_embeddings(
    graph: &mut Graph<GgmlMetadata>,
    input: &[String],
) -> Result<(Vec<EmbeddingObject>, Usage), LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Compute embeddings for {} chunks", input.len());

    // compute embeddings
    let mut embeddings: Vec<EmbeddingObject> = Vec::new();
    let mut usage = Usage::default();
    for (idx, input) in input.iter().enumerate() {
        // set input
        let tensor_data = input.as_bytes().to_vec();
        graph
            .set_input(0, wasmedge_wasi_nn::TensorType::U8, &[1], &tensor_data)
            .map_err(|e| {
                let err_msg = e.to_string();

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                LlamaCoreError::Backend(BackendError::SetInput(err_msg))
            })?;

        #[cfg(feature = "logging")]
        debug!(target: "stdout", "compute embeddings for chunk {}", idx + 1);

        match graph.compute() {
            Ok(_) => {
                // Retrieve the output.
                let output_buffer = get_output_buffer(graph, OUTPUT_TENSOR)?;

                // convert inference result to string
                let output = std::str::from_utf8(&output_buffer[..]).map_err(|e| {
                    let err_msg = format!(
                        "Failed to decode the buffer of the inference result to a utf-8 string. Reason: {}",
                        e
                    );

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", &err_msg);

                    LlamaCoreError::Operation(err_msg)
                })?;

                // deserialize the embedding data
                let embedding = serde_json::from_str::<Embedding>(output).map_err(|e| {
                    let err_msg =
                        format!("Failed to deserialize the embedding data. Reason: {}", e);

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", &err_msg);

                    LlamaCoreError::Operation(err_msg)
                })?;

                let embedding_object = EmbeddingObject {
                    index: idx as u64,
                    object: String::from("embedding"),
                    embedding: embedding.data,
                };

                embeddings.push(embedding_object);

                // retrieve the number of prompt and completion tokens
                let token_info = get_token_info_by_graph(graph)?;

                usage.prompt_tokens += token_info.prompt_tokens;
                usage.completion_tokens += token_info.completion_tokens;
                usage.total_tokens = usage.prompt_tokens + usage.completion_tokens;
            }
            Err(e) => {
                let err_msg = format!("Failed to compute embeddings. Reason: {}", e);

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                return Err(LlamaCoreError::Backend(BackendError::Compute(err_msg)));
            }
        }
    }

    #[cfg(feature = "logging")]
    info!(target: "stdout", "token usage of embeddings: {} prompt tokens, {} comletion tokens", usage.prompt_tokens, usage.completion_tokens);

    Ok((embeddings, usage))
}

/// Get the dimension of the embedding model.
///
/// # Arguments
///
/// * `name` - The name of the embedding model. If `None`, the dimension of the first model will be returned.
///
/// # Returns
///
/// The dimension of the embedding model.
///
/// # Errors
///
/// * The model does not exist in the embedding graphs.
/// * No embedding model is available.
pub fn dimension(name: Option<&str>) -> Result<u64, LlamaCoreError> {
    let embedding_graphs = match EMBEDDING_GRAPHS.get() {
        Some(embedding_graphs) => embedding_graphs,
        None => {
            let err_msg = "Fail to get the underlying value of `EMBEDDING_GRAPHS`.";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            return Err(LlamaCoreError::Operation(err_msg.into()));
        }
    };

    let embedding_graphs = embedding_graphs.lock().map_err(|e| {
        let err_msg = format!("Fail to acquire the lock of `EMBEDDING_GRAPHS`. {}", e);

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", &err_msg);

        LlamaCoreError::Operation(err_msg)
    })?;

    match name {
        Some(model_name) => match embedding_graphs.get(model_name) {
            Some(graph) => Ok(graph.metadata.ctx_size),
            None => {
                let err_msg = format!(
                    "The model `{}` does not exist in the embedding graphs.",
                    model_name
                );

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                Err(LlamaCoreError::Operation(err_msg))
            }
        },
        None => {
            if !embedding_graphs.is_empty() {
                let graph = match embedding_graphs.values().next() {
                    Some(graph) => graph,
                    None => {
                        let err_msg = "Fail to get the underlying value of `EMBEDDING_GRAPHS`.";

                        #[cfg(feature = "logging")]
                        error!(target: "stdout", "{}", err_msg);

                        return Err(LlamaCoreError::Operation(err_msg.into()));
                    }
                };

                Ok(graph.metadata.ctx_size)
            } else {
                let err_msg = "There is no model available in the embedding graphs.";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                Err(LlamaCoreError::Operation(err_msg.into()))
            }
        }
    }
}

#[derive(Debug, Serialize, Deserialize)]
struct Embedding {
    #[serde(rename = "n_embedding")]
    len: u64,
    #[serde(rename = "embedding")]
    data: Vec<f64>,
}

/// Generate a list of chunks from a given text. Each chunk will be up to the `chunk_capacity`.
///
/// # Arguments
///
/// * `text` - A reference to a text.
///
/// * `ty` - Type of the text, `txt` for text content or `md` for markdown content.
///
/// * `chunk_capacity` - The max tokens each chunk contains.
///
/// # Returns
///
/// A vector of strings.
///
/// # Errors
///
/// Returns an error if the operation fails.
pub fn chunk_text(
    text: impl AsRef<str>,
    ty: impl AsRef<str>,
    chunk_capacity: usize,
) -> Result<Vec<String>, LlamaCoreError> {
    if ty.as_ref().to_lowercase().as_str() != "txt" && ty.as_ref().to_lowercase().as_str() != "md" {
        let err_msg = "Failed to upload the target file. Only files with 'txt' and 'md' extensions are supported.";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        return Err(LlamaCoreError::Operation(err_msg.into()));
    }

    match ty.as_ref().to_lowercase().as_str() {
        "txt" => {
            #[cfg(feature = "logging")]
            info!(target: "stdout", "Chunk the plain text contents.");

            let tokenizer = cl100k_base().map_err(|e| {
                let err_msg = e.to_string();

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                LlamaCoreError::Operation(err_msg)
            })?;

            // create a text splitter
            let splitter = TextSplitter::new(tokenizer).with_trim_chunks(true);

            let chunks = splitter
                .chunks(text.as_ref(), chunk_capacity)
                .map(|s| s.to_string())
                .collect::<Vec<_>>();

            #[cfg(feature = "logging")]
            info!(target: "stdout", "Number of chunks: {}", chunks.len());

            Ok(chunks)
        }
        "md" => {
            #[cfg(feature = "logging")]
            info!(target: "stdout", "Chunk the markdown contents.");

            let tokenizer = cl100k_base().map_err(|e| {
                let err_msg = e.to_string();

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                LlamaCoreError::Operation(err_msg)
            })?;

            // create a markdown splitter
            let splitter = MarkdownSplitter::new(tokenizer).with_trim_chunks(true);

            let chunks = splitter
                .chunks(text.as_ref(), chunk_capacity)
                .map(|s| s.to_string())
                .collect::<Vec<_>>();

            #[cfg(feature = "logging")]
            info!(target: "stdout", "Number of chunks: {}", chunks.len());

            Ok(chunks)
        }
        _ => {
            let err_msg =
                "Failed to upload the target file. Only text and markdown files are supported.";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            Err(LlamaCoreError::Operation(err_msg.into()))
        }
    }
}