1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
//! Llama Core, abbreviated as `llama-core`, defines a set of APIs. Developers can utilize these APIs to build applications based on large models, such as chatbots, RAG, and more.

#[cfg(feature = "logging")]
#[macro_use]
extern crate log;

pub mod audio;
pub mod chat;
pub mod completions;
pub mod embeddings;
pub mod error;
pub mod graph;
pub mod images;
pub mod models;
pub mod rag;
pub mod utils;

pub use error::LlamaCoreError;
pub use graph::{EngineType, Graph, GraphBuilder};

use chat_prompts::PromptTemplateType;
use once_cell::sync::OnceCell;
use serde::{Deserialize, Serialize};
use std::{
    collections::HashMap,
    path::Path,
    sync::{Mutex, RwLock},
};
use utils::get_output_buffer;
use wasmedge_stable_diffusion::*;

// key: model_name, value: Graph
pub(crate) static CHAT_GRAPHS: OnceCell<Mutex<HashMap<String, Graph>>> = OnceCell::new();
// key: model_name, value: Graph
pub(crate) static EMBEDDING_GRAPHS: OnceCell<Mutex<HashMap<String, Graph>>> = OnceCell::new();
// cache bytes for decoding utf8
pub(crate) static CACHED_UTF8_ENCODINGS: OnceCell<Mutex<Vec<u8>>> = OnceCell::new();
// running mode
pub(crate) static RUNNING_MODE: OnceCell<RwLock<RunningMode>> = OnceCell::new();
// stable diffusion context for the text-to-image task
pub(crate) static SD_TEXT_TO_IMAGE: OnceCell<Mutex<StableDiffusion>> = OnceCell::new();
// stable diffusion context for the image-to-image task
pub(crate) static SD_IMAGE_TO_IMAGE: OnceCell<Mutex<StableDiffusion>> = OnceCell::new();
// context for the audio task
pub(crate) static AUDIO_GRAPH: OnceCell<Mutex<Graph>> = OnceCell::new();

pub(crate) const MAX_BUFFER_SIZE: usize = 2usize.pow(14) * 15 + 128;
pub(crate) const OUTPUT_TENSOR: usize = 0;
const PLUGIN_VERSION: usize = 1;

/// Model metadata
#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct Metadata {
    // this field not defined for the beckend plugin
    #[serde(skip_serializing)]
    pub model_name: String,
    // this field not defined for the beckend plugin
    #[serde(skip_serializing)]
    pub model_alias: String,
    // this field not defined for the beckend plugin
    #[serde(skip_serializing)]
    pub log_prompts: bool,
    // this field not defined for the beckend plugin
    #[serde(skip_serializing)]
    pub prompt_template: PromptTemplateType,

    // * Plugin parameters (used by this plugin):
    #[serde(rename = "enable-log")]
    pub log_enable: bool,
    #[serde(rename = "enable-debug-log")]
    pub debug_log: bool,
    // #[serde(rename = "stream-stdout")]
    // pub stream_stdout: bool,
    #[serde(rename = "embedding")]
    pub embeddings: bool,
    #[serde(rename = "n-predict")]
    pub n_predict: u64,
    #[serde(skip_serializing_if = "Option::is_none", rename = "reverse-prompt")]
    pub reverse_prompt: Option<String>,
    /// path to the multimodal projector file for llava
    #[serde(skip_serializing_if = "Option::is_none")]
    pub mmproj: Option<String>,
    /// Path to the image file for llava
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image: Option<String>,

    // * Model parameters (need to reload the model if updated):
    #[serde(rename = "n-gpu-layers")]
    pub n_gpu_layers: u64,
    /// The main GPU to use. Defaults to None.
    #[serde(rename = "main-gpu")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub main_gpu: Option<u64>,
    /// How split tensors should be distributed accross GPUs. If None the model is not split; otherwise, a comma-separated list of non-negative values, e.g., "3,2" presents 60% of the data to GPU 0 and 40% to GPU 1.
    #[serde(rename = "tensor-split")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tensor_split: Option<String>,
    #[serde(skip_serializing_if = "Option::is_none", rename = "use-mmap")]
    pub use_mmap: Option<bool>,
    // * Context parameters (used by the llama context):
    #[serde(rename = "ctx-size")]
    pub ctx_size: u64,
    #[serde(rename = "batch-size")]
    pub batch_size: u64,
    #[serde(rename = "threads")]
    pub threads: u64,

    // * Sampling parameters (used by the llama sampling context).
    #[serde(rename = "temp")]
    pub temperature: f64,
    #[serde(rename = "top-p")]
    pub top_p: f64,
    #[serde(rename = "repeat-penalty")]
    pub repeat_penalty: f64,
    #[serde(rename = "presence-penalty")]
    pub presence_penalty: f64,
    #[serde(rename = "frequency-penalty")]
    pub frequency_penalty: f64,

    // * grammar parameters
    /// BNF-like grammar to constrain generations (see samples in grammars/ dir). Defaults to empty string.
    pub grammar: String,
    /// JSON schema to constrain generations (<https://json-schema.org/>), e.g. `{}` for any JSON object. For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub json_schema: Option<String>,
}
impl Default for Metadata {
    fn default() -> Self {
        Self {
            model_name: String::new(),
            model_alias: String::new(),
            log_prompts: false,
            debug_log: false,
            prompt_template: PromptTemplateType::Llama2Chat,
            log_enable: false,
            embeddings: false,
            n_predict: 1024,
            reverse_prompt: None,
            mmproj: None,
            image: None,
            n_gpu_layers: 100,
            main_gpu: None,
            tensor_split: None,
            use_mmap: Some(true),
            ctx_size: 512,
            batch_size: 512,
            threads: 2,
            temperature: 1.0,
            top_p: 1.0,
            repeat_penalty: 1.1,
            presence_penalty: 0.0,
            frequency_penalty: 0.0,
            grammar: String::new(),
            json_schema: None,
        }
    }
}

/// Builder for the `Metadata` struct
#[derive(Debug)]
pub struct MetadataBuilder {
    metadata: Metadata,
}
impl MetadataBuilder {
    pub fn new<S: Into<String>>(model_name: S, model_alias: S, pt: PromptTemplateType) -> Self {
        let metadata = Metadata {
            model_name: model_name.into(),
            model_alias: model_alias.into(),
            prompt_template: pt,
            ..Default::default()
        };

        Self { metadata }
    }

    pub fn with_prompt_template(mut self, template: PromptTemplateType) -> Self {
        self.metadata.prompt_template = template;
        self
    }

    pub fn enable_plugin_log(mut self, enable: bool) -> Self {
        self.metadata.log_enable = enable;
        self
    }

    pub fn enable_debug_log(mut self, enable: bool) -> Self {
        self.metadata.debug_log = enable;
        self
    }

    pub fn enable_prompts_log(mut self, enable: bool) -> Self {
        self.metadata.log_prompts = enable;
        self
    }

    pub fn enable_embeddings(mut self, enable: bool) -> Self {
        self.metadata.embeddings = enable;
        self
    }

    pub fn with_n_predict(mut self, n: u64) -> Self {
        self.metadata.n_predict = n;
        self
    }

    pub fn with_main_gpu(mut self, gpu: Option<u64>) -> Self {
        self.metadata.main_gpu = gpu;
        self
    }

    pub fn with_tensor_split(mut self, split: Option<String>) -> Self {
        self.metadata.tensor_split = split;
        self
    }

    pub fn with_threads(mut self, threads: u64) -> Self {
        self.metadata.threads = threads;
        self
    }

    pub fn with_reverse_prompt(mut self, prompt: Option<String>) -> Self {
        self.metadata.reverse_prompt = prompt;
        self
    }

    pub fn with_mmproj(mut self, path: Option<String>) -> Self {
        self.metadata.mmproj = path;
        self
    }

    pub fn with_image(mut self, path: impl Into<String>) -> Self {
        self.metadata.image = Some(path.into());
        self
    }

    pub fn with_n_gpu_layers(mut self, n: u64) -> Self {
        self.metadata.n_gpu_layers = n;
        self
    }

    pub fn disable_mmap(mut self, disable: Option<bool>) -> Self {
        self.metadata.use_mmap = disable.map(|v| !v);
        self
    }

    pub fn with_ctx_size(mut self, size: u64) -> Self {
        self.metadata.ctx_size = size;
        self
    }

    pub fn with_batch_size(mut self, size: u64) -> Self {
        self.metadata.batch_size = size;
        self
    }

    pub fn with_temperature(mut self, temp: f64) -> Self {
        self.metadata.temperature = temp;
        self
    }

    pub fn with_top_p(mut self, top_p: f64) -> Self {
        self.metadata.top_p = top_p;
        self
    }

    pub fn with_repeat_penalty(mut self, penalty: f64) -> Self {
        self.metadata.repeat_penalty = penalty;
        self
    }

    pub fn with_presence_penalty(mut self, penalty: f64) -> Self {
        self.metadata.presence_penalty = penalty;
        self
    }

    pub fn with_frequency_penalty(mut self, penalty: f64) -> Self {
        self.metadata.frequency_penalty = penalty;
        self
    }

    pub fn with_grammar(mut self, grammar: impl Into<String>) -> Self {
        self.metadata.grammar = grammar.into();
        self
    }

    pub fn with_json_schema(mut self, schema: Option<String>) -> Self {
        self.metadata.json_schema = schema;
        self
    }

    pub fn build(self) -> Metadata {
        self.metadata
    }
}

/// Builder for creating an audio metadata
#[derive(Debug)]
pub struct AudioMetadataBuilder {
    metadata: Metadata,
}
impl AudioMetadataBuilder {
    pub fn new<S: Into<String>>(model_name: S, model_alias: S) -> Self {
        let metadata = Metadata {
            model_name: model_name.into(),
            model_alias: model_alias.into(),
            prompt_template: PromptTemplateType::Null,
            ..Default::default()
        };

        Self { metadata }
    }

    pub fn enable_plugin_log(mut self, enable: bool) -> Self {
        self.metadata.log_enable = enable;
        self
    }

    pub fn enable_debug_log(mut self, enable: bool) -> Self {
        self.metadata.debug_log = enable;
        self
    }

    pub fn build(self) -> Metadata {
        self.metadata
    }
}

/// Initialize the core context
pub fn init_core_context(
    metadata_for_chats: Option<&[Metadata]>,
    metadata_for_embeddings: Option<&[Metadata]>,
) -> Result<(), LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Initializing the core context");

    if metadata_for_chats.is_none() && metadata_for_embeddings.is_none() {
        let err_msg = "Failed to initialize the core context. Please set metadata for chat completions and/or embeddings.";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        return Err(LlamaCoreError::InitContext(err_msg.into()));
    }

    let mut mode = RunningMode::Embeddings;

    if let Some(metadata_chats) = metadata_for_chats {
        let mut chat_graphs = HashMap::new();
        for metadata in metadata_chats {
            let graph = Graph::new(metadata)?;

            chat_graphs.insert(graph.name().to_string(), graph);
        }
        CHAT_GRAPHS.set(Mutex::new(chat_graphs)).map_err(|_| {
            let err_msg = "Failed to initialize the core context. Reason: The `CHAT_GRAPHS` has already been initialized";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            LlamaCoreError::InitContext(err_msg.into())
        })?;

        mode = RunningMode::Chat
    }

    if let Some(metadata_embeddings) = metadata_for_embeddings {
        let mut embedding_graphs = HashMap::new();
        for metadata in metadata_embeddings {
            let graph = Graph::new(metadata)?;

            embedding_graphs.insert(graph.name().to_string(), graph);
        }
        EMBEDDING_GRAPHS
            .set(Mutex::new(embedding_graphs))
            .map_err(|_| {
                let err_msg = "Failed to initialize the core context. Reason: The `EMBEDDING_GRAPHS` has already been initialized";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", err_msg);

                LlamaCoreError::InitContext(err_msg.into())
            })?;

        if mode == RunningMode::Chat {
            mode = RunningMode::ChatEmbedding;
        }
    }

    #[cfg(feature = "logging")]
    info!(target: "stdout", "running mode: {}", mode);

    RUNNING_MODE.set(RwLock::new(mode)).map_err(|_| {
        let err_msg = "Failed to initialize the core context. Reason: The `RUNNING_MODE` has already been initialized";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        LlamaCoreError::InitContext(err_msg.into())
    })?;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "The core context has been initialized");

    Ok(())
}

/// Initialize the core context for RAG scenarios.
pub fn init_rag_core_context(
    metadata_for_chats: &[Metadata],
    metadata_for_embeddings: &[Metadata],
) -> Result<(), LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Initializing the core context for RAG scenarios");

    // chat models
    if metadata_for_chats.is_empty() {
        let err_msg = "The metadata for chat models is empty";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        return Err(LlamaCoreError::InitContext(err_msg.into()));
    }
    let mut chat_graphs = HashMap::new();
    for metadata in metadata_for_chats {
        let graph = Graph::new(metadata)?;

        chat_graphs.insert(graph.name().to_string(), graph);
    }
    CHAT_GRAPHS.set(Mutex::new(chat_graphs)).map_err(|_| {
        let err_msg = "Failed to initialize the core context. Reason: The `CHAT_GRAPHS` has already been initialized";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        LlamaCoreError::InitContext(err_msg.into())
    })?;

    // embedding models
    if metadata_for_embeddings.is_empty() {
        let err_msg = "The metadata for embeddings is empty";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        return Err(LlamaCoreError::InitContext(err_msg.into()));
    }
    let mut embedding_graphs = HashMap::new();
    for metadata in metadata_for_embeddings {
        let graph = Graph::new(metadata)?;

        embedding_graphs.insert(graph.name().to_string(), graph);
    }
    EMBEDDING_GRAPHS
        .set(Mutex::new(embedding_graphs))
        .map_err(|_| {
            let err_msg = "Failed to initialize the core context. Reason: The `EMBEDDING_GRAPHS` has already been initialized";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            LlamaCoreError::InitContext(err_msg.into())
        })?;

    let running_mode = RunningMode::Rag;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "running mode: {}", running_mode);

    // set running mode
    RUNNING_MODE.set(RwLock::new(running_mode)).map_err(|_| {
            let err_msg = "Failed to initialize the core context. Reason: The `RUNNING_MODE` has already been initialized";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            LlamaCoreError::InitContext(err_msg.into())
        })?;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "The core context for RAG scenarios has been initialized");

    Ok(())
}

/// Get the plugin info
///
/// Note that it is required to call `init_core_context` before calling this function.
pub fn get_plugin_info() -> Result<PluginInfo, LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Getting the plugin info");

    match running_mode()? {
        RunningMode::Embeddings => {
            let embedding_graphs = match EMBEDDING_GRAPHS.get() {
                Some(embedding_graphs) => embedding_graphs,
                None => {
                    let err_msg = "Fail to get the underlying value of `EMBEDDING_GRAPHS`.";

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", err_msg);

                    return Err(LlamaCoreError::Operation(err_msg.into()));
                }
            };

            let embedding_graphs = embedding_graphs.lock().map_err(|e| {
                let err_msg = format!("Fail to acquire the lock of `EMBEDDING_GRAPHS`. {}", e);

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                LlamaCoreError::Operation(err_msg)
            })?;

            let graph = match embedding_graphs.values().next() {
                Some(graph) => graph,
                None => {
                    let err_msg = "Fail to get the underlying value of `EMBEDDING_GRAPHS`.";

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", err_msg);

                    return Err(LlamaCoreError::Operation(err_msg.into()));
                }
            };

            get_plugin_info_by_graph(graph)
        }
        _ => {
            let chat_graphs = match CHAT_GRAPHS.get() {
                Some(chat_graphs) => chat_graphs,
                None => {
                    let err_msg = "Fail to get the underlying value of `CHAT_GRAPHS`.";

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", err_msg);

                    return Err(LlamaCoreError::Operation(err_msg.into()));
                }
            };

            let chat_graphs = chat_graphs.lock().map_err(|e| {
                let err_msg = format!("Fail to acquire the lock of `CHAT_GRAPHS`. {}", e);

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", &err_msg);

                LlamaCoreError::Operation(err_msg)
            })?;

            let graph = match chat_graphs.values().next() {
                Some(graph) => graph,
                None => {
                    let err_msg = "Fail to get the underlying value of `CHAT_GRAPHS`.";

                    #[cfg(feature = "logging")]
                    error!(target: "stdout", "{}", err_msg);

                    return Err(LlamaCoreError::Operation(err_msg.into()));
                }
            };

            get_plugin_info_by_graph(graph)
        }
    }
}

fn get_plugin_info_by_graph(graph: &Graph) -> Result<PluginInfo, LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Getting the plugin info by the graph named {}", graph.name());

    // get the plugin metadata
    let output_buffer = get_output_buffer(graph, PLUGIN_VERSION)?;
    let metadata: serde_json::Value = serde_json::from_slice(&output_buffer[..]).map_err(|e| {
        let err_msg = format!("Fail to deserialize the plugin metadata. {}", e);

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", &err_msg);

        LlamaCoreError::Operation(err_msg)
    })?;

    // get build number of the plugin
    let plugin_build_number = match metadata.get("llama_build_number") {
        Some(value) => match value.as_u64() {
            Some(number) => number,
            None => {
                let err_msg = "Failed to convert the build number of the plugin to u64";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", err_msg);

                return Err(LlamaCoreError::Operation(err_msg.into()));
            }
        },
        None => {
            let err_msg = "Metadata does not have the field `llama_build_number`.";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            return Err(LlamaCoreError::Operation(err_msg.into()));
        }
    };

    // get commit id of the plugin
    let plugin_commit = match metadata.get("llama_commit") {
        Some(value) => match value.as_str() {
            Some(commit) => commit,
            None => {
                let err_msg = "Failed to convert the commit id of the plugin to string";

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", err_msg);

                return Err(LlamaCoreError::Operation(err_msg.into()));
            }
        },
        None => {
            let err_msg = "Metadata does not have the field `llama_commit`.";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            return Err(LlamaCoreError::Operation(err_msg.into()));
        }
    };

    #[cfg(feature = "logging")]
    info!(target: "stdout", "Plugin info: b{}(commit {})", plugin_build_number, plugin_commit);

    Ok(PluginInfo {
        build_number: plugin_build_number,
        commit_id: plugin_commit.to_string(),
    })
}

/// Version info of the `wasi-nn_ggml` plugin, including the build number and the commit id.
#[derive(Debug, Clone)]
pub struct PluginInfo {
    pub build_number: u64,
    pub commit_id: String,
}
impl std::fmt::Display for PluginInfo {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "wasinn-ggml plugin: b{}(commit {})",
            self.build_number, self.commit_id
        )
    }
}

/// Running mode
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum RunningMode {
    Chat,
    Embeddings,
    ChatEmbedding,
    Rag,
}
impl std::fmt::Display for RunningMode {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            RunningMode::Chat => write!(f, "chat"),
            RunningMode::Embeddings => write!(f, "embeddings"),
            RunningMode::ChatEmbedding => write!(f, "chat-embeddings"),
            RunningMode::Rag => write!(f, "rag"),
        }
    }
}

/// Return the current running mode.
pub fn running_mode() -> Result<RunningMode, LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Get the running mode.");

    let mode = match RUNNING_MODE.get() {
        Some(mode) => match mode.read() {
            Ok(mode) => mode.to_owned(),
            Err(e) => {
                let err_msg = format!("Fail to get the underlying value of `RUNNING_MODE`. {}", e);

                #[cfg(feature = "logging")]
                error!(target: "stdout", "{}", err_msg);

                return Err(LlamaCoreError::Operation(err_msg));
            }
        },
        None => {
            let err_msg = "Fail to get the underlying value of `RUNNING_MODE`.";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            return Err(LlamaCoreError::Operation(err_msg.into()));
        }
    };

    #[cfg(feature = "logging")]
    info!(target: "stdout", "running mode: {}", &mode);

    Ok(mode.to_owned())
}

/// Initialize the stable diffusion context
pub fn init_stable_diffusion_context(gguf: impl AsRef<str>) -> Result<(), LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Initializing the stable diffusion context");

    // create the stable diffusion context for the text-to-image task
    let sd = StableDiffusion::new(Task::TextToImage, gguf.as_ref());
    SD_TEXT_TO_IMAGE.set(Mutex::new(sd)).map_err(|_| {
        let err_msg = "Failed to initialize the stable diffusion context. Reason: The `SD_TEXT_TO_IMAGE` has already been initialized";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        LlamaCoreError::InitContext(err_msg.into())
    })?;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "The stable diffusion text-to-image context has been initialized");

    // create the stable diffusion context for the image-to-image task
    let sd = StableDiffusion::new(Task::ImageToImage, gguf.as_ref());
    SD_IMAGE_TO_IMAGE.set(Mutex::new(sd)).map_err(|_| {
        let err_msg = "Failed to initialize the stable diffusion context. Reason: The `SD_IMAGE_TO_IMAGE` has already been initialized";

        #[cfg(feature = "logging")]
        error!(target: "stdout", "{}", err_msg);

        LlamaCoreError::InitContext(err_msg.into())
    })?;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "The stable diffusion image-to-image context has been initialized");

    Ok(())
}

/// Initialize the whisper context
pub fn init_whisper_context(
    metadata: &Metadata,
    model_file: impl AsRef<Path>,
) -> Result<(), LlamaCoreError> {
    #[cfg(feature = "logging")]
    info!(target: "stdout", "Initializing the audio context");

    // create and initialize the audio context
    let graph = GraphBuilder::new(EngineType::Whisper)?
        .with_config(metadata)?
        .use_cpu()
        .build_from_files([model_file.as_ref()])?;

    AUDIO_GRAPH.set(Mutex::new(graph)).map_err(|_| {
            let err_msg = "Failed to initialize the audio context. Reason: The `AUDIO_GRAPH` has already been initialized";

            #[cfg(feature = "logging")]
            error!(target: "stdout", "{}", err_msg);

            LlamaCoreError::InitContext(err_msg.into())
        })?;

    #[cfg(feature = "logging")]
    info!(target: "stdout", "The audio context has been initialized");

    Ok(())
}