pub struct LinkedVector<T> { /* private fields */ }
Expand description

A doubly-linked list that uses handles to refer to elements that exist within a vector. This allows for O(1) insertion and removal of elements from the list, and O(1) access to elements by handle.

Implementations§

source§

impl<T> LinkedVector<T>

source

pub fn new() -> Self

Creates a new, empty LinkedVector.

source

pub fn with_capacity(size: usize) -> Self

Creates a new, empty LinkedVector with the specified capacity.

source

pub fn append(&mut self, other: &mut Self)

Moves all elements from other into self, leaving other empty. This operation completes in O(n) time where n is the length of other.

use linked_vector::*;
let mut lv1 = LinkedVector::new();
let mut lv2 = LinkedVector::from([1, 2, 3]);
 
lv1.append(&mut lv2);
 
assert_eq!(lv1.into_iter().collect::<Vec<_>>(), vec![1, 2, 3]);
assert_eq!(lv2.len(), 0);
source

pub fn back(&self) -> Option<&T>

Gives a reference to the back element, or None if the list is empty. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
assert_eq!(lv.back(), Some(&3));
source

pub fn back_mut(&mut self) -> Option<&mut T>

Gives a mutable reference to the element back element, or None if the list is empty. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
*lv.back_mut().unwrap() = 42;
 
assert_eq!(lv.back_mut(), Some(&mut 42));
source

pub fn capacity(&self) -> usize

Returns the total number of elements the vector can hold without reallocating.

source

pub fn clear(&mut self)

Removes all elements from the list.

source

pub fn contains(&self, value: &T) -> boolwhere
T: PartialEq,

Returns true if the list contains an element with the given value. This operation completes in O(n) time where n is the length of the list.

source

pub fn cursor(&self) -> Cursor<'_, T>

Creates a cursor that can be used to traverse the list.

use linked_vector::*;
let lv = LinkedVector::from([1, 2, 3]);
let mut cursor = lv.cursor();
 
assert_eq!(cursor.get(), Some(&1));
 
cursor.move_next();
 
assert_eq!(cursor.get(), Some(&2));
source

pub fn cursor_mut(&mut self) -> CursorMut<'_, T>

Creates a cursor that holds a mutable reference to the LinkedVector that can be used to traverse the list.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3, 4, 5, 6]);
let mut cursor = lv.cursor_mut();
 
cursor.forward(3);
 
assert_eq!(cursor.get(), Some(&4));
 
*cursor.get_mut().unwrap() = 42;
 
assert_eq!(lv.to_vec(), vec![1, 2, 3, 42, 5, 6]);
source

pub fn cursor_at(&self, hnode: HNode) -> Cursor<'_, T>

Creates a cursor that can be used to traverse the list starting at the given node. This operation completes in O(1) time.

use linked_vector::*;
let lv = LinkedVector::from([1, 2, 3, 4, 5, 6, 7, 8, 9]);
let h  = lv.find_node(&3).unwrap();
let mut cursor = lv.cursor_at(h);
 
cursor.forward(3);
 
assert_eq!(cursor.get(), Some(&6));
source

pub fn cursor_at_mut(&mut self, hnode: HNode) -> CursorMut<'_, T>

Creates a cursor that holds a mutable reference to the LinkedVector that can be used to traverse the list starting at the given node.

source

pub fn find_node(&self, value: &T) -> Option<HNode>where
T: PartialEq,

Returns the handle to the first node with the given value. If no such node exists, None is returned. This operation completes in O(n) time.

use linked_vector::*;
let lv = LinkedVector::from([1, 2, 3, 4, 5, 6]);
let h  = lv.find_node(&3).unwrap();
 
assert_eq!(lv.get(h), Some(&3));
assert_eq!(lv.find_node(&42), None);
source

pub fn front(&self) -> Option<&T>

Gives a reference to the element at the front of the vector, or None if the list is empty. This operation completes in O(1) time.

source

pub fn front_mut(&mut self) -> Option<&mut T>

Gives a mutable reference to the element at the front of the vector, or None if the list is empty. This operation completes in O(1) time.

source

pub fn front_node(&self) -> Option<HNode>

Returns a handle to the first node in the list, or None if the list is empty. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
let hnode = lv.push_front(42);
 
assert_eq!(lv.front_node(), Some(hnode));
assert_eq!(lv.front_node().and_then(|h| lv.get(h)), Some(&42));
source

pub fn back_node(&self) -> Option<HNode>

Returns a handle to the last node in the list, or None if the list is empty. This operation completes in O(1) time.

source

pub fn get(&self, node: HNode) -> Option<&T>

Provides a reference to the element indicated by the given handle, or None if the handle is invalid. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
let hnode = lv.push_front(42);
 
assert_eq!(lv.get(hnode), Some(&42));
source

pub fn get_mut(&mut self, node: HNode) -> Option<&mut T>

Provides a mutable reference to the element indicated by the given handle, or None if the handle is invalid. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
let hnode = lv.push_front(0);
 
*lv.get_mut(hnode).unwrap() = 42;
 
assert_eq!(lv.get(hnode), Some(&42));
source

pub fn handles(&self) -> Handles<'_, T>

Returns an iterator over the handles of the vector. The handles will reflect the order of the linked list. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.push_back(43);
let h3 = lv.push_back(44);
 
let iter = lv.handles();
 
assert_eq!(iter.collect::<Vec<_>>(), vec![h1, h2, h3]);
source

pub fn insert_after(&mut self, node: HNode, value: T) -> HNode

Inserts a new element after the one indicated by the handle, node. Returns a handle to the newly inserted element. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.insert_after(h1, 43);
 
assert_eq!(lv.next_node(h1), Some(h2));
assert_eq!(lv.get(h2), Some(&43));
source

pub fn insert_before(&mut self, node: HNode, value: T) -> HNode

Inserts a new element before the one indicated by the handle, node. Returns a handle to the newly inserted element. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.insert_before(h1, 43);
 
assert_eq!(lv.next_node(h2), Some(h1));
assert_eq!(lv.get(h1), Some(&42));
source

pub fn is_empty(&self) -> bool

Returns true if the list contains no elements.

source

pub fn iter(&self) -> Iter<'_, T>

Returns an iterator over the elements of the list.

source

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Returns an iterator over the elements of the list. Renders mutable references to the elements.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
lv.iter_mut().for_each(|x| *x += 1);
 
assert_eq!(lv, LinkedVector::from([2, 3, 4]));
source

pub fn len(&self) -> usize

Returns the length of the list.

source

pub fn next_node(&self, node: HNode) -> Option<HNode>

Returns a handle to the next node in the list, or None if the given handle is the last node in the list. This operation completes in O(1)

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.push_back(43);
 
assert_eq!(lv.next_node(h1), Some(h2));
source

pub fn pop_back(&mut self) -> Option<T>

Pops the last element of the vector. Returns None if the vector is empty. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
assert_eq!(lv.pop_back(), Some(3));
source

pub fn pop_front(&mut self) -> Option<T>

Pops the first element of the vector. Returns None if the vector is empty. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
assert_eq!(lv.pop_front(), Some(1));
source

pub fn prev_node(&self, node: HNode) -> Option<HNode>

Returns a handle to the previous node in the list, or None if the given handle is the first node in the list. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.push_back(43);
 
assert_eq!(lv.prev_node(h2), Some(h1));
source

pub fn push_back(&mut self, value: T) -> HNode

Pushes a new element to the back of the list. Returns a handle to the newly inserted element. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let h1 = lv.push_back(42);
let h2 = lv.push_back(43);
 
assert_eq!(lv.next_node(h1), Some(h2));
source

pub fn push_front(&mut self, value: T) -> HNode

Pushes a new element to the front of the list. Returns a handle to the newly inserted element. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
let h1 = lv.front_node().unwrap();
let h2 = lv.push_front(42);
 
assert_eq!(lv.next_node(h2), Some(h1));
source

pub fn remove(&mut self, value: &T) -> Option<T>where
T: PartialEq,

Removes the first element with the indicated value. Returns the element if it is found, or None otherwise. This operation completes in O(n) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
 
assert_eq!(lv.remove(&2), Some(2));
assert_eq!(lv, LinkedVector::from([1, 3]));
source

pub fn remove_node(&mut self, node: HNode) -> Option<T>

Removes the element indicated by the handle, node. Returns the element if the handle is valid, or None otherwise. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::from([1, 2, 3]);
let handles = lv.handles().collect::<Vec<_>>();
 
lv.remove_node(handles[1]);
 
assert_eq!(lv, LinkedVector::from([1, 3]));
source

pub fn sort_unstable(&mut self)where
T: Ord,

Sorts the elemements in place in ascending order. Previously held handles will still be valid and reference the same elements (with the same values) as before. Quicksort is used with the Lomuto partition scheme. Only the next and prev fields of the nodes are modified in the list. This operation completes in O(n log n) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
let h1 = lv.push_back(3);
let h2 = lv.push_back(2);
let h3 = lv.push_back(1);
 
lv.sort_unstable();
 
assert_eq!(lv.to_vec(), vec![1, 2, 3]);
assert_eq!(lv.get(h1), Some(&3));
assert_eq!(lv.get(h2), Some(&2));
assert_eq!(lv.get(h3), Some(&1));
source

pub fn swap(&mut self, hnode1: &mut HNode, hnode2: &mut HNode)

Swaps the elements indicated by the handles, h1 and h2. Only the next and prev fields of nodes are altered. h1 and h2 will be updated to reference the swapped values. This operation completes in O(1) time.

use linked_vector::*;
let mut lv = LinkedVector::new();
 
let mut h1 = lv.push_back(42);
let mut h2 = lv.push_back(43);
 
let h1_bak = h1;
let h2_bak = h2;
 
lv.swap(&mut h1, &mut h2);
 
assert_eq!(lv[h1], 43);
assert_eq!(lv[h2], 42);
assert_eq!(lv.next_node(h1), Some(h2));
assert_eq!(lv.next_node(h2_bak), Some(h1_bak));
assert_eq!(lv.get(h1_bak), Some(&42));
assert_eq!(lv.get(h2_bak), Some(&43));
source

pub fn to_vec(&self) -> Vec<T>where
T: Clone,

Returns a vector containing the elements of the list. This operation completes in O(n) time.

use linked_vector::*;
let lv = LinkedVector::from([1, 2, 3]);
 
assert_eq!(lv.to_vec(), vec![1, 2, 3]);

Trait Implementations§

source§

impl<T> Clone for LinkedVector<T>where
T: Clone,

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug> Debug for LinkedVector<T>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T> Default for LinkedVector<T>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<'a, T> Extend<&'a T> for LinkedVector<T>where
T: Clone,

source§

fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = &'a T>,

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<T> Extend<T> for LinkedVector<T>

source§

fn extend<I>(&mut self, iter: I)where
I: IntoIterator<Item = T>,

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
source§

impl<T, const N: usize> From<[T; N]> for LinkedVector<T>

source§

fn from(arr: [T; N]) -> Self

Converts to this type from the input type.
source§

impl<T> FromIterator<T> for LinkedVector<T>

source§

fn from_iter<I>(iter: I) -> Selfwhere
I: IntoIterator<Item = T>,

Creates a value from an iterator. Read more
source§

impl<T> Index<HNode> for LinkedVector<T>

§

type Output = T

The returned type after indexing.
source§

fn index(&self, handle: HNode) -> &Self::Output

Performs the indexing (container[index]) operation. Read more
source§

impl<T> IndexMut<HNode> for LinkedVector<T>

source§

fn index_mut(&mut self, handle: HNode) -> &mut Self::Output

Performs the mutable indexing (container[index]) operation. Read more
source§

impl<'a, T> IntoIterator for &'a LinkedVector<T>

§

type Item = &'a T

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, T> IntoIterator for &'a mut LinkedVector<T>

§

type Item = &'a mut T

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<T> IntoIterator for LinkedVector<T>

§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Self::IntoIter

Creates an iterator from a value. Read more
source§

impl<T> PartialEq<LinkedVector<T>> for LinkedVector<T>where
T: PartialEq,

source§

fn eq(&self, other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: Eq> Eq for LinkedVector<T>

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for LinkedVector<T>where
T: RefUnwindSafe,

§

impl<T> Send for LinkedVector<T>where
T: Send,

§

impl<T> Sync for LinkedVector<T>where
T: Sync,

§

impl<T> Unpin for LinkedVector<T>where
T: Unpin,

§

impl<T> UnwindSafe for LinkedVector<T>where
T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere
T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere
T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere
T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere
U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere
T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere
U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere
U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere
V: MultiLane<T>,

§

fn vzip(self) -> V