pub struct KMeansValidParams<F: Float, R: Rng, D: Distance<F>> { /* private fields */ }Expand description
The set of hyperparameters that can be specified for the execution of the K-means algorithm.
Implementations§
Source§impl<F: Float, R: Rng, D: Distance<F>> KMeansValidParams<F, R, D>
impl<F: Float, R: Rng, D: Distance<F>> KMeansValidParams<F, R, D>
Sourcepub fn n_runs(&self) -> usize
pub fn n_runs(&self) -> usize
The final results will be the best output of n_runs consecutive runs in terms of inertia.
Sourcepub fn tolerance(&self) -> F
pub fn tolerance(&self) -> F
The training is considered complete if the euclidean distance
between the old set of centroids and the new set of centroids
after a training iteration is lower or equal than tolerance.
Sourcepub fn max_n_iterations(&self) -> u64
pub fn max_n_iterations(&self) -> u64
We exit the training loop when the number of training iterations
exceeds max_n_iterations even if the tolerance convergence
condition has not been met.
Sourcepub fn n_clusters(&self) -> usize
pub fn n_clusters(&self) -> usize
The number of clusters we will be looking for in the training dataset.
Sourcepub fn init_method(&self) -> &KMeansInit<F>
pub fn init_method(&self) -> &KMeansInit<F>
Cluster initialization strategy
Trait Implementations§
Source§impl<F: Clone + Float, R: Clone + Rng, D: Clone + Distance<F>> Clone for KMeansValidParams<F, R, D>
impl<F: Clone + Float, R: Clone + Rng, D: Clone + Distance<F>> Clone for KMeansValidParams<F, R, D>
Source§fn clone(&self) -> KMeansValidParams<F, R, D>
fn clone(&self) -> KMeansValidParams<F, R, D>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl<F: Debug + Float, R: Debug + Rng, D: Debug + Distance<F>> Debug for KMeansValidParams<F, R, D>
impl<F: Debug + Float, R: Debug + Rng, D: Debug + Distance<F>> Debug for KMeansValidParams<F, R, D>
Source§impl<F: Float, R: Rng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
impl<F: Float, R: Rng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
Source§fn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>,
) -> Result<Self::Object, KMeansError>
fn fit( &self, dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>, ) -> Result<Self::Object, KMeansError>
Given an input matrix observations, with shape (n_observations, n_features),
fit identifies n_clusters centroids based on the training data distribution.
An instance of KMeans is returned.
type Object = KMeans<F, D>
Source§impl<'a, F: Float + Debug, R: Rng + Clone, DA: Data<Elem = F>, T, D: 'a + Distance<F> + Debug> FitWith<'a, ArrayBase<DA, Dim<[usize; 2]>>, T, IncrKMeansError<KMeans<F, D>>> for KMeansValidParams<F, R, D>
impl<'a, F: Float + Debug, R: Rng + Clone, DA: Data<Elem = F>, T, D: 'a + Distance<F> + Debug> FitWith<'a, ArrayBase<DA, Dim<[usize; 2]>>, T, IncrKMeansError<KMeans<F, D>>> for KMeansValidParams<F, R, D>
Source§fn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>,
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
fn fit_with( &self, model: Self::ObjectIn, dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>, ) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
Performs a single batch update of the Mini-Batch K-means algorithm.
Given an input matrix observations, with shape (n_batch, n_features) and a previous
KMeans model, the model’s centroids are updated with the input matrix. If model is
None, then it’s initialized using the specified initialization algorithm. The return
value consists of the updated model and a bool value that indicates whether the algorithm
has converged.
type ObjectIn = Option<KMeans<F, D>>
type ObjectOut = KMeans<F, D>
Source§impl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq for KMeansValidParams<F, R, D>
impl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq for KMeansValidParams<F, R, D>
impl<F: Float, R: Rng, D: Distance<F>> StructuralPartialEq for KMeansValidParams<F, R, D>
Auto Trait Implementations§
impl<F, R, D> Freeze for KMeansValidParams<F, R, D>
impl<F, R, D> RefUnwindSafe for KMeansValidParams<F, R, D>
impl<F, R, D> Send for KMeansValidParams<F, R, D>where
R: Send,
impl<F, R, D> Sync for KMeansValidParams<F, R, D>where
R: Sync,
impl<F, R, D> Unpin for KMeansValidParams<F, R, D>where
R: Unpin,
impl<F, R, D> UnwindSafe for KMeansValidParams<F, R, D>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more