Struct linfa_clustering::KMeansValidParams
source · [−]Expand description
The set of hyperparameters that can be specified for the execution of the K-means algorithm.
Implementations
sourceimpl<F: Float, R: Rng, D: Distance<F>> KMeansValidParams<F, R, D>
impl<F: Float, R: Rng, D: Distance<F>> KMeansValidParams<F, R, D>
sourcepub fn n_runs(&self) -> usize
pub fn n_runs(&self) -> usize
The final results will be the best output of n_runs consecutive runs in terms of inertia.
sourcepub fn tolerance(&self) -> F
pub fn tolerance(&self) -> F
The training is considered complete if the euclidean distance
between the old set of centroids and the new set of centroids
after a training iteration is lower or equal than tolerance.
sourcepub fn max_n_iterations(&self) -> u64
pub fn max_n_iterations(&self) -> u64
We exit the training loop when the number of training iterations
exceeds max_n_iterations even if the tolerance convergence
condition has not been met.
sourcepub fn n_clusters(&self) -> usize
pub fn n_clusters(&self) -> usize
The number of clusters we will be looking for in the training dataset.
sourcepub fn init_method(&self) -> &KMeansInit<F>
pub fn init_method(&self) -> &KMeansInit<F>
Cluster initialization strategy
Trait Implementations
sourceimpl<F: Clone + Float, R: Clone + Rng, D: Clone + Distance<F>> Clone for KMeansValidParams<F, R, D>
impl<F: Clone + Float, R: Clone + Rng, D: Clone + Distance<F>> Clone for KMeansValidParams<F, R, D>
sourcefn clone(&self) -> KMeansValidParams<F, R, D>
fn clone(&self) -> KMeansValidParams<F, R, D>
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source. Read more
sourceimpl<F: Debug + Float, R: Debug + Rng, D: Debug + Distance<F>> Debug for KMeansValidParams<F, R, D>
impl<F: Debug + Float, R: Debug + Rng, D: Debug + Distance<F>> Debug for KMeansValidParams<F, R, D>
sourceimpl<F: Float, R: Rng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
impl<F: Float, R: Rng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
sourcefn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::Object, KMeansError>
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::Object, KMeansError>
Given an input matrix observations, with shape (n_observations, n_features),
fit identifies n_clusters centroids based on the training data distribution.
An instance of KMeans is returned.
type Object = KMeans<F, D>
sourceimpl<'a, F: Float + Debug, R: Rng + Clone, DA: Data<Elem = F>, T, D: 'a + Distance<F> + Debug> FitWith<'a, ArrayBase<DA, Dim<[usize; 2]>>, T, IncrKMeansError<KMeans<F, D>>> for KMeansValidParams<F, R, D>
impl<'a, F: Float + Debug, R: Rng + Clone, DA: Data<Elem = F>, T, D: 'a + Distance<F> + Debug> FitWith<'a, ArrayBase<DA, Dim<[usize; 2]>>, T, IncrKMeansError<KMeans<F, D>>> for KMeansValidParams<F, R, D>
sourcefn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
fn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
Performs a single batch update of the Mini-Batch K-means algorithm.
Given an input matrix observations, with shape (n_batch, n_features) and a previous
KMeans model, the model’s centroids are updated with the input matrix. If model is
None, then it’s initialized using the specified initialization algorithm. The return
value consists of the updated model and a bool value that indicates whether the algorithm
has converged.
type ObjectIn = Option<KMeans<F, D>>
type ObjectOut = KMeans<F, D>
sourceimpl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq<KMeansValidParams<F, R, D>> for KMeansValidParams<F, R, D>
impl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq<KMeansValidParams<F, R, D>> for KMeansValidParams<F, R, D>
sourcefn eq(&self, other: &KMeansValidParams<F, R, D>) -> bool
fn eq(&self, other: &KMeansValidParams<F, R, D>) -> bool
This method tests for self and other values to be equal, and is used
by ==. Read more
sourcefn ne(&self, other: &KMeansValidParams<F, R, D>) -> bool
fn ne(&self, other: &KMeansValidParams<F, R, D>) -> bool
This method tests for !=.
impl<F: Float, R: Rng, D: Distance<F>> StructuralPartialEq for KMeansValidParams<F, R, D>
Auto Trait Implementations
impl<F, R, D> RefUnwindSafe for KMeansValidParams<F, R, D> where
D: RefUnwindSafe,
F: RefUnwindSafe,
R: RefUnwindSafe,
impl<F, R, D> Send for KMeansValidParams<F, R, D> where
R: Send,
impl<F, R, D> Sync for KMeansValidParams<F, R, D> where
R: Sync,
impl<F, R, D> Unpin for KMeansValidParams<F, R, D> where
R: Unpin,
impl<F, R, D> UnwindSafe for KMeansValidParams<F, R, D> where
D: UnwindSafe,
F: UnwindSafe + RefUnwindSafe,
R: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more