Struct linfa_clustering::KMeansValidParams [−][src]
Expand description
The set of hyperparameters that can be specified for the execution of the K-means algorithm.
Implementations
The final results will be the best output of n_runs consecutive runs in terms of inertia.
The training is considered complete if the euclidean distance
between the old set of centroids and the new set of centroids
after a training iteration is lower or equal than tolerance
.
We exit the training loop when the number of training iterations
exceeds max_n_iterations
even if the tolerance
convergence
condition has not been met.
The number of clusters we will be looking for in the training dataset.
Cluster initialization strategy
Trait Implementations
impl<F: Float, R: Rng + SeedableRng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
impl<F: Float, R: Rng + SeedableRng + Clone, DA: Data<Elem = F>, T, D: Distance<F>> Fit<ArrayBase<DA, Dim<[usize; 2]>>, T, KMeansError> for KMeansValidParams<F, R, D>
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::Object, KMeansError>
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::Object, KMeansError>
Given an input matrix observations
, with shape (n_observations, n_features)
,
fit
identifies n_clusters
centroids based on the training data distribution.
An instance of KMeans
is returned.
fn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
fn fit_with(
&self,
model: Self::ObjectIn,
dataset: &'a DatasetBase<ArrayBase<DA, Ix2>, T>
) -> Result<Self::ObjectOut, IncrKMeansError<Self::ObjectOut>>
Performs a single batch update of the Mini-Batch K-means algorithm.
Given an input matrix observations
, with shape (n_batch, n_features)
and a previous
KMeans
model, the model’s centroids are updated with the input matrix. If model
is
None
, then it’s initialized using the specified initialization algorithm. The return
value consists of the updated model and a bool
value that indicates whether the algorithm
has converged.
impl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq<KMeansValidParams<F, R, D>> for KMeansValidParams<F, R, D>
impl<F: PartialEq + Float, R: PartialEq + Rng, D: PartialEq + Distance<F>> PartialEq<KMeansValidParams<F, R, D>> for KMeansValidParams<F, R, D>
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
This method tests for !=
.
Auto Trait Implementations
impl<F, R, D> RefUnwindSafe for KMeansValidParams<F, R, D> where
D: RefUnwindSafe,
F: RefUnwindSafe,
R: RefUnwindSafe,
impl<F, R, D> Send for KMeansValidParams<F, R, D> where
R: Send,
impl<F, R, D> Sync for KMeansValidParams<F, R, D> where
R: Sync,
impl<F, R, D> Unpin for KMeansValidParams<F, R, D> where
D: Unpin,
F: Unpin,
R: Unpin,
impl<F, R, D> UnwindSafe for KMeansValidParams<F, R, D> where
D: UnwindSafe,
F: UnwindSafe + RefUnwindSafe,
R: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more