Enum linfa_clustering::KMeansError[][src]

pub enum KMeansError {
    InvalidValue(String),
    InertiaError(String),
    NotConverged(String),
    LinfaError(Error),
}

An error when modeling a KMeans algorithm

Variants

InvalidValue(String)

When any of the hyperparameters are set the wrong value

InertiaError(String)

When inertia computation fails

NotConverged(String)

When fitting algorithm does not converge

LinfaError(Error)

Trait Implementations

impl Debug for KMeansError[src]

impl Display for KMeansError[src]

impl Error for KMeansError[src]

impl<F: Float, R: Rng + Clone + SeedableRng, D: Data<Elem = F>, T> Fit<ArrayBase<D, Dim<[usize; 2]>>, T, KMeansError> for KMeansHyperParams<F, R>[src]

type Object = KMeans<F>

fn fit(
    &self,
    dataset: &DatasetBase<ArrayBase<D, Ix2>, T>
) -> Result<Self::Object, KMeansError>
[src]

Given an input matrix observations, with shape (n_observations, n_features), fit identifies n_clusters centroids based on the training data distribution.

An instance of KMeans is returned.

impl From<Error> for KMeansError[src]

impl From<KMeansError> for GmmError[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,