Enum linfa_clustering::KMeansError [−][src]
pub enum KMeansError {
InvalidValue(String),
InertiaError(String),
NotConverged(String),
LinfaError(Error),
}An error when modeling a KMeans algorithm
Variants
InvalidValue(String)When any of the hyperparameters are set the wrong value
InertiaError(String)When inertia computation fails
NotConverged(String)When fitting algorithm does not converge
LinfaError(Error)Trait Implementations
impl Error for KMeansError[src]
impl Error for KMeansError[src]impl<F: Float, R: Rng + Clone + SeedableRng, D: Data<Elem = F>, T> Fit<ArrayBase<D, Dim<[usize; 2]>>, T, KMeansError> for KMeansHyperParams<F, R>[src]
impl<F: Float, R: Rng + Clone + SeedableRng, D: Data<Elem = F>, T> Fit<ArrayBase<D, Dim<[usize; 2]>>, T, KMeansError> for KMeansHyperParams<F, R>[src]type Object = KMeans<F>
fn fit(
&self,
dataset: &DatasetBase<ArrayBase<D, Ix2>, T>
) -> Result<Self::Object, KMeansError>[src]
&self,
dataset: &DatasetBase<ArrayBase<D, Ix2>, T>
) -> Result<Self::Object, KMeansError>
Given an input matrix observations, with shape (n_observations, n_features),
fit identifies n_clusters centroids based on the training data distribution.
An instance of KMeans is returned.
impl From<KMeansError> for GmmError[src]
impl From<KMeansError> for GmmError[src]fn from(source: KMeansError) -> Self[src]
Auto Trait Implementations
impl RefUnwindSafe for KMeansError
impl RefUnwindSafe for KMeansErrorimpl Send for KMeansError
impl Send for KMeansErrorimpl Sync for KMeansError
impl Sync for KMeansErrorimpl Unpin for KMeansError
impl Unpin for KMeansErrorimpl UnwindSafe for KMeansError
impl UnwindSafe for KMeansError