Struct light_curve_feature::features::VillarFit
source · pub struct VillarFit { /* private fields */ }
Expand description
Villar function fit
Seven fit parameters and goodness of fit (reduced $\chi^2$) of the Villar function developed for supernovae classification:
$$ f(t) = c + \frac{A}{ 1 + \exp{\frac{-(t - t_0)}{\tau_\mathrm{rise}}}} \left\{ \begin{array}{ll} 1 - \frac{\nu (t - t_0)}{\gamma}, &t < t_0 + \gamma \\ (1 - \nu) \exp{\frac{-(t-t_0-\gamma)}{\tau_\mathrm{fall}}}, &t \geq t_0 + \gamma \end{array} \right. $$ where $A, \gamma, \tau_\mathrm{rise}, \tau_\mathrm{fall} > 0$, $\nu \in [0; 1)$.Here we introduce a new dimensionless parameter $\nu$ instead of the plateau slope $\beta$ from the orioginal paper: $\nu \equiv -\beta \gamma / A$.
Note, that the Villar function is developed to be used with fluxes, not magnitudes.
- Depends on: time, magnitude, magnitude error
- Minimum number of observations: 8
- Number of features: 8
Villar et al. 2019 DOI:10.3847/1538-4357/ab418c
Implementations
sourceimpl VillarFit
impl VillarFit
sourcepub fn new<VLP>(
algorithm: CurveFitAlgorithm,
ln_prior: VLP,
inits_bounds: VillarInitsBounds
) -> Selfwhere
VLP: Into<VillarLnPrior>,
pub fn new<VLP>(
algorithm: CurveFitAlgorithm,
ln_prior: VLP,
inits_bounds: VillarInitsBounds
) -> Selfwhere
VLP: Into<VillarLnPrior>,
New VillarFit instance
algorithm
specifies which optimization method is used, it is an instance of the
CurveFitAlgorithm, currently supported algorithms are MCMC and
LMSDER (a Levenberg–Marquard algorithm modification,
requires gsl
Cargo feature).
ln_prior
is an instance of LnPrior and specifies the natural logarithm of the prior to
use. Some curve-fit algorithms doesn’t support this and ignores the prior
sourcepub fn default_algorithm() -> CurveFitAlgorithm
pub fn default_algorithm() -> CurveFitAlgorithm
Default McmcCurveFit for VillarFit
sourcepub fn default_ln_prior() -> VillarLnPrior
pub fn default_ln_prior() -> VillarLnPrior
Default VillarLnPrior for VillarFit
pub fn default_inits_bounds() -> VillarInitsBounds
pub fn doc() -> &'static str
Trait Implementations
sourceimpl<'de> Deserialize<'de> for VillarFit
impl<'de> Deserialize<'de> for VillarFit
sourcefn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
sourceimpl EvaluatorInfoTrait for VillarFit
impl EvaluatorInfoTrait for VillarFit
sourcefn min_ts_length(&self) -> usize
fn min_ts_length(&self) -> usize
sourcefn is_t_required(&self) -> bool
fn is_t_required(&self) -> bool
sourcefn is_m_required(&self) -> bool
fn is_m_required(&self) -> bool
sourcefn is_w_required(&self) -> bool
fn is_w_required(&self) -> bool
sourcefn is_sorting_required(&self) -> bool
fn is_sorting_required(&self) -> bool
sourceimpl<T> FeatureEvaluator<T> for VillarFitwhere
T: Float,
impl<T> FeatureEvaluator<T> for VillarFitwhere
T: Float,
sourcefn eval(&self, ts: &mut TimeSeries<'_, T>) -> Result<Vec<T>, EvaluatorError>
fn eval(&self, ts: &mut TimeSeries<'_, T>) -> Result<Vec<T>, EvaluatorError>
EvaluatorError
sourcefn eval_or_fill(&self, ts: &mut TimeSeries<'_, T>, fill_value: T) -> Vec<T>
fn eval_or_fill(&self, ts: &mut TimeSeries<'_, T>, fill_value: T) -> Vec<T>
sourcefn check_ts_length(
&self,
ts: &TimeSeries<'_, T>
) -> Result<usize, EvaluatorError>
fn check_ts_length(
&self,
ts: &TimeSeries<'_, T>
) -> Result<usize, EvaluatorError>
sourceimpl<T> FitDerivalivesTrait<T, NPARAMS> for VillarFitwhere
T: Float,
impl<T> FitDerivalivesTrait<T, NPARAMS> for VillarFitwhere
T: Float,
fn derivatives(t: T, param: &[T; 7], jac: &mut [T; 7])
sourceimpl FitFeatureEvaluatorGettersTrait<NPARAMS> for VillarFit
impl FitFeatureEvaluatorGettersTrait<NPARAMS> for VillarFit
fn get_algorithm(&self) -> &CurveFitAlgorithm
fn ln_prior_from_ts<T: Float>(
&self,
ts: &mut TimeSeries<'_, T>
) -> LnPrior<NPARAMS>
sourceimpl<T> FitFunctionTrait<T, NPARAMS> for VillarFitwhere
T: Float,
impl<T> FitFunctionTrait<T, NPARAMS> for VillarFitwhere
T: Float,
sourceimpl<T> FitInitsBoundsTrait<T, NPARAMS> for VillarFitwhere
T: Float,
impl<T> FitInitsBoundsTrait<T, NPARAMS> for VillarFitwhere
T: Float,
fn init_and_bounds_from_ts(
&self,
ts: &mut TimeSeries<'_, T>
) -> FitInitsBoundsArrays<NPARAMS>
sourceimpl<T, U> FitModelTrait<T, U, NPARAMS> for VillarFitwhere
T: Float + Into<U>,
U: LikeFloat,
impl<T, U> FitModelTrait<T, U, NPARAMS> for VillarFitwhere
T: Float + Into<U>,
U: LikeFloat,
sourceimpl<U> FitParametersInternalDimlessTrait<U, NPARAMS> for VillarFitwhere
U: LikeFloat,
impl<U> FitParametersInternalDimlessTrait<U, NPARAMS> for VillarFitwhere
U: LikeFloat,
fn dimensionless_to_internal(params: &[U; 7]) -> [U; 7]
fn internal_to_dimensionless(params: &[U; 7]) -> [U; 7]
sourceimpl FitParametersInternalExternalTrait<NPARAMS> for VillarFit
impl FitParametersInternalExternalTrait<NPARAMS> for VillarFit
sourceimpl FitParametersOriginalDimLessTrait<NPARAMS> for VillarFit
impl FitParametersOriginalDimLessTrait<NPARAMS> for VillarFit
sourceimpl JsonSchema for VillarFit
impl JsonSchema for VillarFit
sourcefn schema_name() -> String
fn schema_name() -> String
sourcefn json_schema(gen: &mut SchemaGenerator) -> Schema
fn json_schema(gen: &mut SchemaGenerator) -> Schema
sourcefn is_referenceable() -> bool
fn is_referenceable() -> bool
$ref
keyword. Read more