Struct light_curve_feature::features::LinearFit
source · pub struct LinearFit {}
Expand description
Slope, its error and reduced $\chi^2$ of the light curve in the linear fit
Least squares fit of the linear stochastic model with Gaussian noise described by observation errors ${\delta_i}$: $$ m_i = c + \mathrm{slope} t_i + \delta_i \varepsilon_i $$ where $c$ is a constant, ${\varepsilon_i}$ are standard distributed random variables.
Feature values are $\mathrm{slope}$, $\sigma_\mathrm{slope}$ and $\frac{\sum{((m_i - c - \mathrm{slope} t_i) / \delta_i)^2}}{N - 2}$.
- Depends on: time, magnitude, magnitude error
- Minimum number of observations: 3
- Number of features: 3
Implementations
Trait Implementations
sourceimpl<'de> Deserialize<'de> for LinearFit
impl<'de> Deserialize<'de> for LinearFit
sourcefn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
sourceimpl EvaluatorInfoTrait for LinearFit
impl EvaluatorInfoTrait for LinearFit
sourcefn min_ts_length(&self) -> usize
fn min_ts_length(&self) -> usize
Minimum time series length required to successfully evaluate feature
sourcefn is_t_required(&self) -> bool
fn is_t_required(&self) -> bool
If time array used by the feature
sourcefn is_m_required(&self) -> bool
fn is_m_required(&self) -> bool
If magnitude array is used by the feature
sourcefn is_w_required(&self) -> bool
fn is_w_required(&self) -> bool
If weight array is used by the feature
sourcefn is_sorting_required(&self) -> bool
fn is_sorting_required(&self) -> bool
If feature requires time-sorting on the input TimeSeries
sourceimpl<T> FeatureEvaluator<T> for LinearFitwhere
T: Float,
impl<T> FeatureEvaluator<T> for LinearFitwhere
T: Float,
sourcefn eval(&self, ts: &mut TimeSeries<'_, T>) -> Result<Vec<T>, EvaluatorError>
fn eval(&self, ts: &mut TimeSeries<'_, T>) -> Result<Vec<T>, EvaluatorError>
Vector of feature values or
EvaluatorError
sourcefn eval_or_fill(&self, ts: &mut TimeSeries<'_, T>, fill_value: T) -> Vec<T>
fn eval_or_fill(&self, ts: &mut TimeSeries<'_, T>, fill_value: T) -> Vec<T>
Returns vector of feature values and fill invalid components with given value
sourcefn check_ts_length(
&self,
ts: &TimeSeries<'_, T>
) -> Result<usize, EvaluatorError>
fn check_ts_length(
&self,
ts: &TimeSeries<'_, T>
) -> Result<usize, EvaluatorError>
Checks if TimeSeries has enough points to evaluate the feature
sourceimpl JsonSchema for LinearFit
impl JsonSchema for LinearFit
sourcefn schema_name() -> String
fn schema_name() -> String
The name of the generated JSON Schema. Read more
sourcefn json_schema(gen: &mut SchemaGenerator) -> Schema
fn json_schema(gen: &mut SchemaGenerator) -> Schema
Generates a JSON Schema for this type. Read more
sourcefn is_referenceable() -> bool
fn is_referenceable() -> bool
Whether JSON Schemas generated for this type should be re-used where possible using the
$ref
keyword. Read moreAuto Trait Implementations
impl RefUnwindSafe for LinearFit
impl Send for LinearFit
impl Sync for LinearFit
impl Unpin for LinearFit
impl UnwindSafe for LinearFit
Blanket Implementations
sourceimpl<Src, Scheme> ApproxFrom<Src, Scheme> for Srcwhere
Scheme: ApproxScheme,
impl<Src, Scheme> ApproxFrom<Src, Scheme> for Srcwhere
Scheme: ApproxScheme,
sourcefn approx_from(src: Src) -> Result<Src, <Src as ApproxFrom<Src, Scheme>>::Err>
fn approx_from(src: Src) -> Result<Src, <Src as ApproxFrom<Src, Scheme>>::Err>
Convert the given value into an approximately equivalent representation.
sourceimpl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Srcwhere
Dst: ApproxFrom<Src, Scheme>,
Scheme: ApproxScheme,
impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Srcwhere
Dst: ApproxFrom<Src, Scheme>,
Scheme: ApproxScheme,
type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
The error type produced by a failed conversion.
sourcefn approx_into(self) -> Result<Dst, <Src as ApproxInto<Dst, Scheme>>::Err>
fn approx_into(self) -> Result<Dst, <Src as ApproxInto<Dst, Scheme>>::Err>
Convert the subject into an approximately equivalent representation.
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T, Dst> ConvAsUtil<Dst> for T
impl<T, Dst> ConvAsUtil<Dst> for T
sourcefn approx(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, DefaultApprox>,
fn approx(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, DefaultApprox>,
Approximate the subject with the default scheme.
sourcefn approx_by<Scheme>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
fn approx_by<Scheme>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
Approximate the subject with a specific scheme.
sourceimpl<T> ConvUtil for T
impl<T> ConvUtil for T
sourcefn approx_as<Dst>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, DefaultApprox>,
fn approx_as<Dst>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, DefaultApprox>,
Approximate the subject to a given type with the default scheme.
sourcefn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
Approximate the subject to a given type with a specific scheme.
sourcefn into_as<Dst>(self) -> Dstwhere
Self: Sized + Into<Dst>,
fn into_as<Dst>(self) -> Dstwhere
Self: Sized + Into<Dst>,
Convert the subject to a given type.