Struct light_curve_feature::TimeSeries [−][src]
pub struct TimeSeries<'a, T> where
T: Float, { pub t: DataSample<'a, T>, pub m: DataSample<'a, T>, pub w: DataSample<'a, T>, // some fields omitted }
Expand description
Time series object to be put into Feature
This struct caches it’s properties, like mean magnitude value, etc., that’s why mutable reference is required fot feature evaluation
Fields
t: DataSample<'a, T>m: DataSample<'a, T>w: DataSample<'a, T>Implementations
pub fn new(
    t: impl Into<DataSample<'a, T>>, 
    m: impl Into<DataSample<'a, T>>, 
    w: impl Into<DataSample<'a, T>>
) -> Self
pub fn new(
    t: impl Into<DataSample<'a, T>>, 
    m: impl Into<DataSample<'a, T>>, 
    w: impl Into<DataSample<'a, T>>
) -> Self
Construct TimeSeries from array-like objects
t is time, m is magnitude (or flux), w is weights.
All arrays must have the same length, t must increase monotonically. Input arrays could be
ndarray::Array1, ndarray::ArrayView1, 1-D ndarray::CowArray, or &[T]. Several
features assumes that w array corresponds to inverse square errors of m.
pub fn new_without_weight(
    t: impl Into<DataSample<'a, T>>, 
    m: impl Into<DataSample<'a, T>>
) -> Self
pub fn new_without_weight(
    t: impl Into<DataSample<'a, T>>, 
    m: impl Into<DataSample<'a, T>>
) -> Self
Construct TimeSeries from time and magnitude (flux)
It is the same as TimeSeries::new, but sets unity weights. It doesn’t recommended to use it for features dependent on weights / observation errors like crate::StetsonK or crate::LinearFit.
Trait Implementations
Auto Trait Implementations
impl<'a, T> RefUnwindSafe for TimeSeries<'a, T> where
    T: RefUnwindSafe, 
impl<'a, T> Send for TimeSeries<'a, T>
impl<'a, T> Sync for TimeSeries<'a, T>
impl<'a, T> Unpin for TimeSeries<'a, T> where
    T: Unpin, 
impl<'a, T> UnwindSafe for TimeSeries<'a, T> where
    T: RefUnwindSafe + UnwindSafe, 
Blanket Implementations
Convert the given value into an approximately equivalent representation.
impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Src where
    Dst: ApproxFrom<Src, Scheme>,
    Scheme: ApproxScheme, 
impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Src where
    Dst: ApproxFrom<Src, Scheme>,
    Scheme: ApproxScheme, 
type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
The error type produced by a failed conversion.
Convert the subject into an approximately equivalent representation.
Mutably borrows from an owned value. Read more
Approximate the subject with the default scheme.
fn approx_by<Scheme>(self) -> Result<Dst, Self::Err> where
    Self: ApproxInto<Dst, Scheme>,
    Scheme: ApproxScheme, 
fn approx_by<Scheme>(self) -> Result<Dst, Self::Err> where
    Self: ApproxInto<Dst, Scheme>,
    Scheme: ApproxScheme, 
Approximate the subject with a specific scheme.
Approximate the subject to a given type with the default scheme.
fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err> where
    Self: ApproxInto<Dst, Scheme>,
    Scheme: ApproxScheme, 
fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err> where
    Self: ApproxInto<Dst, Scheme>,
    Scheme: ApproxScheme, 
Approximate the subject to a given type with a specific scheme.
Attempt to convert the subject to a given type.