1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
use num_iter::range_inclusive;
use num_traits::{Bounded, One, ToPrimitive};
use std::convert::TryFrom;
use std::fmt;
use std::hash::Hash;
use std::ops::{Add, Sub};
/// A position of a cell.
///
/// `Position<T>` is a tuple `(T, T)`.
/// The first field is the x-coordinate value of the position and the second field is the y-coordinate value of the potition.
/// The type parameter `T` is used as the type of the x- and y-coordinate values of positions.
///
/// # Examples
///
/// ```
/// use life_backend::Position;
/// let pos = Position(2, 3);
/// let pos_x = pos.0;
/// let pos_y = pos.1;
/// assert_eq!(pos_x, 2);
/// assert_eq!(pos_y, 3);
/// ```
///
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct Position<T>(pub T, pub T);
impl<T> Position<T> {
/// Attempts to convert from `Position<U>` to `Position<T>`.
///
/// This operation converts the type of the x- and y-coordinate values of the position from `U` to `T`.
/// If an error occurs in converting from `U` to `T`, returns that error.
///
/// # Examples
///
/// ```
/// use life_backend::Position;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let base: Position<usize> = Position(0, 0);
/// let pos = Position::<i16>::try_from(base)?;
/// # Ok(())
/// # }
/// ```
///
pub fn try_from<U>(value: Position<U>) -> Result<Position<T>, T::Error>
where
T: TryFrom<U>,
{
Ok(Position(T::try_from(value.0)?, T::try_from(value.1)?))
}
/// Attempts to convert from `Position<T>` to `Position<U>`.
///
/// `base.try_into::<U>()` is the same as `Position::<U>::try_from(base)`, see [`try_from()`].
///
/// [`try_from()`]: #method.try_from
///
/// # Examples
///
/// ```
/// use life_backend::Position;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let base: Position<usize> = Position(0, 0);
/// let pos: Position<i16> = base.try_into()?;
/// # Ok(())
/// # }
/// ```
///
#[inline]
pub fn try_into<U>(self) -> Result<Position<U>, U::Error>
where
U: TryFrom<T>,
{
Position::<U>::try_from(self)
}
/// Creates an owning iterator over neighbour positions of the self position in arbitrary order.
/// The neighbour positions are defined in [Moore neighbourhood](https://conwaylife.com/wiki/Moore_neighbourhood).
///
/// # Examples
///
/// ```
/// use std::collections::HashSet;
/// use life_backend::Position;
/// let pos = Position(2, 3);
/// let result: HashSet<_> = pos
/// .moore_neighborhood_positions()
/// .collect();
/// let expected: HashSet<_> = [(1, 2), (2, 2), (3, 2), (1, 3), (3, 3), (1, 4), (2, 4), (3, 4)]
/// .iter()
/// .copied()
/// .map(|(x, y)| Position(x, y))
/// .collect();
/// assert_eq!(result, expected);
/// ```
///
pub fn moore_neighborhood_positions(&self) -> impl Iterator<Item = Self>
where
T: Copy + PartialOrd + Add<Output = T> + Sub<Output = T> + One + Bounded + ToPrimitive,
{
let Position(x, y) = *self;
let min = T::min_value();
let max = T::max_value();
let one = T::one();
let x_start = if x > min { x - one } else { x };
let x_stop = if x < max { x + one } else { x };
let y_start = if y > min { y - one } else { y };
let y_stop = if y < max { y + one } else { y };
range_inclusive(y_start, y_stop)
.flat_map(move |v| range_inclusive(x_start, x_stop).map(move |u| Position(u, v)))
.filter(move |&pos| pos != Position(x, y))
}
}
impl<T> fmt::Display for Position<T>
where
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({}, {})", self.0, self.1)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use i32 as I;
use std::collections::HashSet;
#[test]
fn display() {
let target = Position(1, 2);
assert_eq!(format!("{target}"), "(1, 2)".to_string());
}
#[test]
fn try_from_infallible() {
let base: Position<i8> = Position(0, 0);
let target = Position::<i16>::try_from(base);
assert!(target.is_ok());
}
#[test]
fn try_from_fallible_no_error() {
let base: Position<i16> = Position(0, 0);
let target = Position::<i8>::try_from(base);
assert!(target.is_ok());
}
#[test]
fn try_from_fallible_with_error() {
let base: Position<i8> = Position(-1, 0);
let target = Position::<u8>::try_from(base);
assert!(target.is_err());
}
#[test]
fn try_into_infallible() {
let base: Position<i8> = Position(0, 0);
let target = base.try_into::<i16>();
assert!(target.is_ok());
}
#[test]
fn try_into_fallible_no_error() {
let base: Position<i16> = Position(0, 0);
let target = base.try_into::<i8>();
assert!(target.is_ok());
}
#[test]
fn try_into_fallible_with_error() {
let base: Position<i8> = Position(-1, 0);
let target = base.try_into::<u8>();
assert!(target.is_err());
}
#[test]
fn moore_neighborhood_positions_basic() {
let target: Position<I> = Position(0, 0);
let result: HashSet<_> = target.moore_neighborhood_positions().collect();
assert_eq!(
result,
[(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)]
.iter()
.copied()
.map(|(x, y)| Position(x, y))
.collect::<HashSet<_>>()
);
}
#[test]
fn moore_neighborhood_positions_bounds() {
let min = I::min_value();
let max = I::max_value();
let zero: I = 0;
for (pos_tuple, expected_count) in [
((min, min), 3),
((min, zero), 5),
((min, max), 3),
((zero, min), 5),
((zero, zero), 8),
((zero, max), 5),
((max, min), 3),
((max, zero), 5),
((max, max), 3),
] {
let pos = Position(pos_tuple.0, pos_tuple.1);
assert_eq!(pos.moore_neighborhood_positions().count(), expected_count);
}
}
}