Subsumption

Trait Subsumption 

Source
pub trait Subsumption<Store> {
    // Required method
    fn is_subsumed(&self, store: &Store) -> SKleene;
}

Required Methods§

Source

fn is_subsumed(&self, store: &Store) -> SKleene

Implementors§

Source§

impl<VStore> Subsumption<VStore> for Conjunction<VStore>

Source§

impl<VStore> Subsumption<VStore> for Disjunction<VStore>

Source§

impl<VStore> Subsumption<VStore> for AllEqual<VStore>

Source§

impl<VStore> Subsumption<VStore> for XEqYPlusZ<VStore>
where VStore: Collection, XGreaterEqYPlusZ<VStore>: Subsumption<VStore>, XLessEqYPlusZ<VStore>: Subsumption<VStore>,

Source§

impl<VStore> Subsumption<VStore> for XNeqY<VStore>
where VStore: Collection, XEqY<VStore>: Subsumption<VStore>,

Source§

impl<VStore> Subsumption<VStore> for Distinct<VStore>

Source§

impl<VStore, Dom> Subsumption<VStore> for XEqYMulZ<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded + IsSingleton + Mul<Output = Dom> + Overlap,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for Boolean<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound> + IsSingleton, Bound: Num,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for BooleanNeg<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound> + IsSingleton, Bound: Num,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for XEqY<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound> + Disjoint, Bound: PartialOrd,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for XGreaterYPlusZ<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound>, Bound: PartialOrd + Num,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for XLessY<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound>, Bound: PartialOrd,

Source§

impl<VStore, Dom, Bound> Subsumption<VStore> for XLessYPlusZ<VStore>
where VStore: Collection<Item = Dom>, Dom: Bounded<Item = Bound>, Bound: PartialOrd + Num,

Source§

impl<VStore, Event, R, S> Subsumption<VStore> for Store<VStore, Event, R, S>