pub struct LevenbergMarquardt<F> { /* private fields */ }
Expand description
Levenberg-Marquardt optimization algorithm.
See the module documentation for a usage example.
The runtime and termination behavior can be controlled by various hyperparameters.
Implementations§
Source§impl<F: RealField + Float> LevenbergMarquardt<F>
impl<F: RealField + Float> LevenbergMarquardt<F>
pub fn new() -> Self
Sourcepub fn with_ftol(self, ftol: F) -> Self
pub fn with_ftol(self, ftol: F) -> Self
Set the relative error desired in the objective function $f$
.
Termination occurs when both the actual and
predicted relative reductions for $f$
are at most ftol
.
§Panics
Panics if $\mathtt{ftol} < 0$
.
Sourcepub fn with_xtol(self, xtol: F) -> Self
pub fn with_xtol(self, xtol: F) -> Self
Set relative error between last two approximations.
Termination occurs when the relative error between
two consecutive iterates is at most xtol
.
§Panics
Panics if $\mathtt{xtol} < 0$
.
Sourcepub fn with_gtol(self, gtol: F) -> Self
pub fn with_gtol(self, gtol: F) -> Self
Set orthogonality desired between the residual vector and its derivative.
Termination occurs when the cosine of the angle
between the residual vector $\vec{r}$
and any column of the Jacobian $\mathbf{J}$
is at
most gtol
in absolute value.
With other words, the algorithm will terminate if
\cos\bigl(\sphericalangle (\mathbf{J}\vec{e}_i, \vec{r})\bigr) =
\frac{|(\mathbf{J}^\top \vec{r})_i|}{\|\mathbf{J}\vec{e}_i\|\|\vec{r}\|} \leq \texttt{gtol}
\quad\text{for all }i=1,\ldots,n.
This is based on the fact that those vectors are orthogonal near the optimum (gradient is zero).
The angle check is scale invariant, whereas checking that
$\nabla f(\vec{x})\approx \vec{0}$
is not.
§Panics
Panics if $\mathtt{gtol} < 0$
.
Sourcepub fn with_tol(self, tol: F) -> Self
pub fn with_tol(self, tol: F) -> Self
Shortcut to set tol
as in MINPACK LMDER1
.
Sets ftol = xtol = tol
and gtol = 0
.
§Panics
Panics if $\mathtt{tol} \leq 0$
.
Sourcepub fn with_stepbound(self, stepbound: F) -> Self
pub fn with_stepbound(self, stepbound: F) -> Self
Set factor for the initial step bound.
This bound is set to $\mathtt{stepbound}\cdot\|\mathbf{D}\vec{x}\|$
if nonzero, or else to stepbound
itself. In most cases stepbound
should lie
in the interval $[0.1,100]$
.
§Panics
Panics if $\mathtt{stepbound} \leq 0$
.
Sourcepub fn with_patience(self, patience: usize) -> Self
pub fn with_patience(self, patience: usize) -> Self
Set factor for the maximal number of function evaluations.
The maximal number of function evaluations is set to
$\texttt{patience}\cdot(n + 1)$
.
§Panics
Panics if $\mathtt{patience} \leq 0$
.
Sourcepub fn with_scale_diag(self, scale_diag: bool) -> Self
pub fn with_scale_diag(self, scale_diag: bool) -> Self
Enable or disable whether the variables will be rescaled internally.
Sourcepub fn minimize<N, M, O>(&self, target: O) -> (O, MinimizationReport<F>)where
N: Dim,
M: DimMin<N> + DimMax<N>,
O: LeastSquaresProblem<F, M, N>,
DefaultAllocator: Allocator<N> + Reallocator<F, M, N, DimMaximum<M, N>, N>,
pub fn minimize<N, M, O>(&self, target: O) -> (O, MinimizationReport<F>)where
N: Dim,
M: DimMin<N> + DimMax<N>,
O: LeastSquaresProblem<F, M, N>,
DefaultAllocator: Allocator<N> + Reallocator<F, M, N, DimMaximum<M, N>, N>,
Try to solve the given least squares problem.
The parameters of the problem which are set when this function is called
are used as the initial guess for $\vec{x}$
.
Trait Implementations§
Source§impl<F: Clone> Clone for LevenbergMarquardt<F>
impl<F: Clone> Clone for LevenbergMarquardt<F>
Source§fn clone(&self) -> LevenbergMarquardt<F>
fn clone(&self) -> LevenbergMarquardt<F>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<F: Debug> Debug for LevenbergMarquardt<F>
impl<F: Debug> Debug for LevenbergMarquardt<F>
Source§impl<F: PartialEq> PartialEq for LevenbergMarquardt<F>
impl<F: PartialEq> PartialEq for LevenbergMarquardt<F>
impl<F: Copy> Copy for LevenbergMarquardt<F>
impl<F: Eq> Eq for LevenbergMarquardt<F>
impl<F> StructuralPartialEq for LevenbergMarquardt<F>
Auto Trait Implementations§
impl<F> Freeze for LevenbergMarquardt<F>where
F: Freeze,
impl<F> RefUnwindSafe for LevenbergMarquardt<F>where
F: RefUnwindSafe,
impl<F> Send for LevenbergMarquardt<F>where
F: Send,
impl<F> Sync for LevenbergMarquardt<F>where
F: Sync,
impl<F> Unpin for LevenbergMarquardt<F>where
F: Unpin,
impl<F> UnwindSafe for LevenbergMarquardt<F>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.