pub struct LeanString(/* private fields */);
Expand description
Compact, clone-on-write, UTF-8 encoded, growable string type.
Implementations§
Source§impl LeanString
impl LeanString
Sourcepub const fn new() -> Self
pub const fn new() -> Self
Creates a new empty LeanString
.
Same as String::new()
, this will not allocate on the heap.
§Examples
let s = LeanString::new();
assert!(s.is_empty());
assert!(!s.is_heap_allocated());
Sourcepub const fn from_static_str(text: &'static str) -> Self
pub const fn from_static_str(text: &'static str) -> Self
Creates a new LeanString
from a &'static str
.
§Examples
let s = LeanString::from_static_str("Long text but static lifetime");
assert_eq!(s.as_str(), "Long text but static lifetime");
assert_eq!(s.len(), 29);
assert!(!s.is_heap_allocated());
Sourcepub fn with_capacity(capacity: usize) -> Self
pub fn with_capacity(capacity: usize) -> Self
Creates a new empty LeanString
with at least capacity bytes.
A LeanString
will inline strings if the length is less than or equal to
2 * size_of::<usize>()
bytes. This means that the minimum capacity of a LeanString
is 2 * size_of::<usize>()
bytes.
§Panics
Panics if any of the following conditions is met:
- The system is out-of-memory.
- On 64-bit architecture, the
capacity
is greater than2^56 - 1
. - On 32-bit architecture, the
capacity
is greater than2^32 - 1
.
If you want to handle such a problem manually, use LeanString::try_with_capacity()
.
§Examples
§inline capacity
let s = LeanString::with_capacity(4);
assert_eq!(s.capacity(), 2 * size_of::<usize>());
assert!(!s.is_heap_allocated());
§heap capacity
let s = LeanString::with_capacity(100);
assert_eq!(s.capacity(), 100);
assert!(s.is_heap_allocated());
Sourcepub fn try_with_capacity(capacity: usize) -> Result<Self, ReserveError>
pub fn try_with_capacity(capacity: usize) -> Result<Self, ReserveError>
Fallible version of LeanString::with_capacity()
.
This method won’t panic if the system is out of memory, or if the capacity
is too large, but
returns a ReserveError
. Otherwise it behaves the same as LeanString::with_capacity()
.
Sourcepub fn from_utf8(buf: &[u8]) -> Result<Self, Utf8Error>
pub fn from_utf8(buf: &[u8]) -> Result<Self, Utf8Error>
Converts a slice of bytes to a LeanString
.
If the slice is not valid UTF-8, an error is returned.
§Examples
§valid UTF-8
let bytes = vec![240, 159, 166, 128];
let string = LeanString::from_utf8(&bytes).expect("valid UTF-8");
assert_eq!(string, "🦀");
§invalid UTF-8
let bytes = &[255, 255, 255];
let result = LeanString::from_utf8(bytes);
assert!(result.is_err());
Sourcepub fn from_utf8_lossy(buf: &[u8]) -> Self
pub fn from_utf8_lossy(buf: &[u8]) -> Self
Converts a slice of bytes to a LeanString
, including invalid characters.
During this conversion, all invalid characters are replaced with the
char::REPLACEMENT_CHARACTER
.
§Examples
let invalid_bytes = b"Hello \xF0\x90\x80World";
let string = LeanString::from_utf8_lossy(invalid_bytes);
assert_eq!(string, "Hello �World");
Sourcepub unsafe fn from_utf8_unchecked(buf: &[u8]) -> Self
pub unsafe fn from_utf8_unchecked(buf: &[u8]) -> Self
Converts a slice of bytes to a LeanString
without checking if the bytes are valid
UTF-8.
§Safety
This function is unsafe because it does not check that the bytes passed to it are valid UTF-8. If this constraint is violated, it may cause memory unsafety issues.
Sourcepub fn from_utf16(buf: &[u16]) -> Result<Self, FromUtf16Error>
pub fn from_utf16(buf: &[u16]) -> Result<Self, FromUtf16Error>
Decodes a slice of UTF-16 encoded bytes to a LeanString
, returning an error if buf
contains any invalid code points.
§Examples
§valid UTF-16
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063];
assert_eq!(LeanString::from_utf16(v).unwrap(), "𝄞music");
§invalid UTF-16
// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0xD800, 0x0069, 0x0063];
assert!(LeanString::from_utf16(v).is_err());
Sourcepub fn from_utf16_lossy(buf: &[u16]) -> Self
pub fn from_utf16_lossy(buf: &[u16]) -> Self
Decodes a slice of UTF-16 encoded bytes to a LeanString
, replacing invalid code points
with the char::REPLACEMENT_CHARACTER
.
§Examples
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834];
assert_eq!(LeanString::from_utf16_lossy(v), "𝄞mus\u{FFFD}ic\u{FFFD}");
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the LeanString
has a length of 0, false
otherwise
§Examples
let mut s = LeanString::new();
assert!(s.is_empty());
s.push('a');
assert!(!s.is_empty());
Sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the capacity of the LeanString
, in bytes.
A LeanString
will inline strings if the length is less than or equal to
2 * size_of::<usize>()
bytes. This means that the minimum capacity of a LeanString
is 2 * size_of::<usize>()
bytes.
§Examples
§inline capacity
let s = LeanString::new();
assert_eq!(s.capacity(), 2 * size_of::<usize>());
§heap capacity
let s = LeanString::with_capacity(100);
assert_eq!(s.capacity(), 100);
Sourcepub fn as_str(&self) -> &str
pub fn as_str(&self) -> &str
Returns a string slice containing the entire LeanString
.
§Examples
let s = LeanString::from("foo");
assert_eq!(s.as_str(), "foo");
Sourcepub fn as_bytes(&self) -> &[u8] ⓘ
pub fn as_bytes(&self) -> &[u8] ⓘ
Returns a byte slice containing the entire LeanString
.
§Examples
let s = LeanString::from("hello");
assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
bytes more than the current length.
§Note
This method clones the LeanString
if it is not unique.
§Panics
Panics if any of the following conditions is met:
- The system is out-of-memory.
- On 64-bit architecture, the
capacity
is greater than2^56 - 1
. - On 32-bit architecture, the
capacity
is greater than2^32 - 1
.
If you want to handle such a problem manually, use LeanString::try_reserve()
.
§Examples
let mut s = LeanString::new();
// We have an inline storage on the stack.
assert_eq!(s.capacity(), 2 * size_of::<usize>());
assert!(!s.is_heap_allocated());
s.reserve(100);
// Now we have a heap storage.
assert!(s.capacity() >= s.len() + 100);
assert!(s.is_heap_allocated());
Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), ReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), ReserveError>
Fallible version of LeanString::reserve()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::reserve()
.
Sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the LeanString
to match its length.
The resulting capacity is always greater than 2 * size_of::<usize>()
bytes because
LeanString
has inline (on the stack) storage.
§Note
This method clones the LeanString
if it is not unique and its capacity is greater than
its length.
§Panics
Panics if cloning the LeanString
fails due to the system being out-of-memory. If you
want to handle such a problem manually, use LeanString::try_shrink_to_fit()
.
§Examples
§short string
let mut s = LeanString::from("foo");
s.reserve(100);
assert_eq!(s.capacity(), 3 + 100);
s.shrink_to_fit();
assert_eq!(s.capacity(), 2 * size_of::<usize>());
§long string
let mut s = LeanString::from("This is a text the length is more than 16 bytes");
s.reserve(100);
assert!(s.capacity() > 16 + 100);
s.shrink_to_fit();
assert_eq!(s.capacity(), s.len());
Sourcepub fn try_shrink_to_fit(&mut self) -> Result<(), ReserveError>
pub fn try_shrink_to_fit(&mut self) -> Result<(), ReserveError>
Fallible version of LeanString::shrink_to_fit()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::shrink_to_fit()
.
Sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the LeanString
with a lower bound.
The resulting capacity is always greater than 2 * size_of::<usize>()
bytes because the
LeanString
has inline (on the stack) storage.
§Note
This method clones the LeanString
if it is not unique and its capacity will be changed.
§Panics
Panics if cloning the LeanString
fails due to the system being out-of-memory. If you
want to handle such a problem manually, use LeanString::try_shrink_to()
.
§Examples
let mut s = LeanString::with_capacity(100);
assert_eq!(s.capacity(), 100);
// if the capacity was already bigger than the argument and unique, the call is no-op.
s.shrink_to(100);
assert_eq!(s.capacity(), 100);
s.shrink_to(50);
assert_eq!(s.capacity(), 50);
// if the string can be inlined, it is
s.shrink_to(5);
assert_eq!(s.capacity(), 2 * size_of::<usize>());
Sourcepub fn try_shrink_to(&mut self, min_capacity: usize) -> Result<(), ReserveError>
pub fn try_shrink_to(&mut self, min_capacity: usize) -> Result<(), ReserveError>
Fallible version of LeanString::shrink_to()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::shrink_to()
.
Sourcepub fn push(&mut self, ch: char)
pub fn push(&mut self, ch: char)
Appends the given char
to the end of the LeanString
.
§Panics
Panics if the system is out-of-memory. If you want to handle such a problem manually, use
LeanString::try_push()
.
§Examples
let mut s = LeanString::new();
s.push('f');
s.push('o');
s.push('o');
assert_eq!("foo", s);
Sourcepub fn try_push(&mut self, ch: char) -> Result<(), ReserveError>
pub fn try_push(&mut self, ch: char) -> Result<(), ReserveError>
Fallible version of LeanString::push()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::push()
.
Sourcepub fn pop(&mut self) -> Option<char>
pub fn pop(&mut self) -> Option<char>
Removes the last character from the LeanString
and returns it.
If the LeanString
is empty, None
is returned.
§Panics
This method does not clone and panics the LeanString
without all of following conditions are
true:
- 32-bit architecture
- The
LeanString
is not unique. - The length of the
LeanString
is greater than2^26 - 1
.
If you want to handle such a problem manually, use LeanString::try_pop()
.
§Examples
let mut s = LeanString::from("abč");
assert_eq!(s.pop(), Some('č'));
assert_eq!(s.pop(), Some('b'));
assert_eq!(s.pop(), Some('a'));
assert_eq!(s.pop(), None);
Sourcepub fn try_pop(&mut self) -> Result<Option<char>, ReserveError>
pub fn try_pop(&mut self) -> Result<Option<char>, ReserveError>
Fallible version of LeanString::pop()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::pop()
.
Sourcepub fn push_str(&mut self, string: &str)
pub fn push_str(&mut self, string: &str)
Appends a given string slice onto the end of this LeanString
.
§Panics
Panics if cloning the LeanString
fails due to the system being out-of-memory. If you
want to handle such a problem manually, use LeanString::try_push_str()
.
§Examples
let mut s = LeanString::from("foo");
s.push_str("bar");
assert_eq!("foobar", s);
Sourcepub fn try_push_str(&mut self, string: &str) -> Result<(), ReserveError>
pub fn try_push_str(&mut self, string: &str) -> Result<(), ReserveError>
Fallible version of LeanString::push_str()
.
This method won’t panic if the system is out-of-memory, or the capacity
is too large, but
return an ReserveError
. Otherwise it behaves the same as LeanString::push_str()
.
Sourcepub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char
from the LeanString
at a byte position and returns it.
§Panics
Panics if any of the following conditions:
idx
is larger than or equal totheLeanString
’s length, or if it does not lie on achar
- The system is out-of-memory when cloning the
LeanString
.
For 2, if you want to handle such a problem manually, use LeanString::try_remove()
.
§Examples
let mut s = LeanString::from("Hello 世界");
assert_eq!(s.remove(6), '世');
assert_eq!(s.remove(1), 'e');
assert_eq!(s, "Hllo 界");
§Past total length:
let mut c = LeanString::from("hello there!");
c.remove(12);
§Not on char boundary:
let mut c = LeanString::from("🦄");
c.remove(1);
Sourcepub fn try_remove(&mut self, idx: usize) -> Result<char, ReserveError>
pub fn try_remove(&mut self, idx: usize) -> Result<char, ReserveError>
Fallible version of LeanString::remove()
.
This method won’t panic if the system is out-of-memory, but return an ReserveError
.
Otherwise it behaves the same as LeanString::remove()
.
§Panics
This method still panics if the idx
is larger than or equal to the LeanString
’s
length, or if it does not lie on a char
boundary.
Sourcepub fn retain(&mut self, predicate: impl FnMut(char) -> bool)
pub fn retain(&mut self, predicate: impl FnMut(char) -> bool)
Retains only the characters specified by the predicate
.
If the predicate
returns true
, the character is kept, otherwise it is removed.
§Panics
Panics if the system is out-of-memory when cloning the LeanString
. If you want to
handle such a problem manually, use LeanString::try_retain()
.
§Examples
let mut s = LeanString::from("äb𝄞d€");
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
s.retain(|_| *iter.next().unwrap());
assert_eq!(s, "b𝄞€");
Sourcepub fn try_retain(
&mut self,
predicate: impl FnMut(char) -> bool,
) -> Result<(), ReserveError>
pub fn try_retain( &mut self, predicate: impl FnMut(char) -> bool, ) -> Result<(), ReserveError>
Fallible version of LeanString::retain()
.
This method won’t panic if the system is out-of-memory, but return an ReserveError
.
Sourcepub fn insert(&mut self, idx: usize, ch: char)
pub fn insert(&mut self, idx: usize, ch: char)
Inserts a character into the LeanString
at a byte position.
§Panics
Panics if any of the following conditions:
idx
is larger than theLeanString
’s length, or if it does not lie on achar
boundary.- The system is out-of-memory when cloning the
LeanString
. - The length of after inserting is greater than
2^56 - 1
on 64-bit architecture, or2^32 - 1
on 32-bit architecture.
For 2 and 3, if you want to handle such a problem manually, use LeanString::try_insert()
.
§Examples
let mut s = LeanString::from("Hello world");
s.insert(11, '!');
assert_eq!("Hello world!", s);
s.insert(5, ',');
assert_eq!("Hello, world!", s);
Sourcepub fn try_insert(&mut self, idx: usize, ch: char) -> Result<(), ReserveError>
pub fn try_insert(&mut self, idx: usize, ch: char) -> Result<(), ReserveError>
Fallible version of LeanString::insert()
.
This method won’t panic if the system is out-of-memory, or the capacity
becomes too large
by inserting a character, but return an ReserveError
. Otherwise it behaves the same as
LeanString::insert()
.
§Panics
This method still panics if the idx
is larger than the LeanString
’s length, or if it
does not lie on a char
boundary.
Sourcepub fn insert_str(&mut self, idx: usize, string: &str)
pub fn insert_str(&mut self, idx: usize, string: &str)
Inserts a string slice into the LeanString
at a byte position.
§Panics
Panics if any of the following conditions:
idx
is larger than theLeanString
’s length, or if it does not lie on achar
boundary.- The system is out-of-memory when cloning the
LeanString
. - The length of after inserting is greater than
2^56 - 1
on 64-bit architecture, or2^32 - 1
on 32-bit architecture.
For 2 and 3, if you want to handle such a problem manually, use LeanString::try_insert_str()
.
§Examples
let mut s = LeanString::from("bar");
s.insert_str(0, "foo");
assert_eq!("foobar", s);
Sourcepub fn try_insert_str(
&mut self,
idx: usize,
string: &str,
) -> Result<(), ReserveError>
pub fn try_insert_str( &mut self, idx: usize, string: &str, ) -> Result<(), ReserveError>
Fallible version of LeanString::insert_str()
.
This method won’t panic if the system is out-of-memory, or the capacity
becomes too large
by inserting a string slice, but return an ReserveError
. Otherwise it behaves the same
as LeanString::insert_str()
.
§Panics
This method still panics if the idx
is larger than the LeanString
’s length, or if it
does not lie on a char
boundary.
Sourcepub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Shortens a LeanString
to the specified length.
If new_len
is greater than or equal to the string’s current length, this has no effect.
§Panics
Panics if any of the following conditions is met:
new_len
does not lie on achar
boundary.- The system is out-of-memory when cloning the
LeanString
.
For 2, If you want to handle such a problem manually, use LeanString::try_truncate()
.
§Examples
let mut s = LeanString::from("hello");
s.truncate(2);
assert_eq!(s, "he");
// Truncating to a larger length does nothing:
s.truncate(10);
assert_eq!(s, "he");
Sourcepub fn try_truncate(&mut self, new_len: usize) -> Result<(), ReserveError>
pub fn try_truncate(&mut self, new_len: usize) -> Result<(), ReserveError>
Fallible version of LeanString::truncate()
.
This method won’t panic if the system is out-of-memory, but return an ReserveError
.
Otherwise it behaves the same as LeanString::truncate()
.
§Panics
This method still panics if new_len
does not lie on a char
boundary.
Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Reduces the length of the LeanString
to zero.
If the LeanString
is unique, this method will not change the capacity.
Otherwise, creates a new unique LeanString
without heap allocation.
§Examples
§unique
let mut s = LeanString::from("This is a example of unique LeanString");
assert_eq!(s.capacity(), 38);
s.clear();
assert_eq!(s, "");
assert_eq!(s.capacity(), 38);
§not unique
let mut s = LeanString::from("This is a example of not unique LeanString");
assert_eq!(s.capacity(), 42);
let s2 = s.clone();
s.clear();
assert_eq!(s, "");
assert_eq!(s.capacity(), 2 * size_of::<usize>());
Sourcepub fn is_heap_allocated(&self) -> bool
pub fn is_heap_allocated(&self) -> bool
Returns whether the LeanString
is heap-allocated.
§Examples
§inline
let s = LeanString::from("hello");
assert!(!s.is_heap_allocated());
§heap
let s = LeanString::from("More than 2 * size_of::<usize>() bytes is heap-allocated");
assert!(s.is_heap_allocated());
Methods from Deref<Target = str>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if self
has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());
1.9.0 · Sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
Sourcepub fn floor_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn floor_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not exceeding index
where is_char_boundary(x)
is true
.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");
Sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn ceil_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not below index
where is_char_boundary(x)
is true
.
If index
is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary
. See that method
for more details.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");
1.0.0 · Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
§Examples
let s = "Hello";
let ptr = s.as_ptr();
1.20.0 · Sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
1.20.0 · Sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
1.0.0 · Sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end)
insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
1.4.0 · Sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked
.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid
, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None
if that’s not the case.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
1.0.0 · Sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
Remember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
1.0.0 · Sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
Remember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
1.0.0 · Sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
1.1.0 · Sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);
1.34.0 · Sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
This uses the same definition as char::is_ascii_whitespace
.
To split by Unicode Whitespace
instead, use split_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
Various kinds of ASCII whitespace are considered
(see char::is_ascii_whitespace
):
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);
1.0.0 · Sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n
) or
sequences of a carriage return followed by a line feed (\r\n
).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r
) not immediately followed by a
line feed (\n
) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());
The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
1.0.0 · Sourcepub fn lines_any(&self) -> LinesAny<'_>
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
Returns an iterator over the lines of a string.
1.8.0 · Sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16
over the string encoded
as native endian UTF-16 (without byte-order mark).
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);
1.0.0 · Sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
1.0.0 · Sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, in which case this function will return true if
the &str
is a prefix of this string slice.
The pattern can also be a char
, a slice of char
s, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of char
s.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1.0.0 · Sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
1.0.0 · Sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
1.0.0 · Sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
1.0.0 · Sourcepub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
If there are no matches the full string slice is returned as the only item in the iterator.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "AABBCC".split("DD").collect();
assert_eq!(v, ["AABBCC"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace
for this behavior.
1.51.0 · Sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split
in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1.0.0 · Sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
1.0.0 · Sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
1.0.0 · Sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
Returns an iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
1.0.0 · Sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
1.0.0 · Sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
1.52.0 · Sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1.52.0 · Sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1.2.0 · Sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
1.2.0 · Sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
1.5.0 · Sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
1.5.0 · Sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
Returns an iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
1.0.0 · Sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());
1.30.0 · Sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());
Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
1.30.0 · Sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());
Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
1.0.0 · Sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
1.0.0 · Sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
1.0.0 · Sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
1.30.0 · Sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
1.45.0 · Sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns the substring after the prefix,
wrapped in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
1.45.0 · Sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
Sourcepub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
🔬This is a nightly-only experimental API. (trim_prefix_suffix
)
pub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
trim_prefix_suffix
)Returns a string slice with the optional prefix removed.
If the string starts with the pattern prefix
, returns the substring after the prefix.
Unlike strip_prefix
, this method always returns &str
for easy method chaining,
instead of returning Option<&str>
.
If the string does not start with prefix
, returns the original string unchanged.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Prefix present - removes it
assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
assert_eq!("foofoo".trim_prefix("foo"), "foo");
// Prefix absent - returns original string
assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
Sourcepub fn trim_suffix<P>(&self, suffix: P) -> &str
🔬This is a nightly-only experimental API. (trim_prefix_suffix
)
pub fn trim_suffix<P>(&self, suffix: P) -> &str
trim_prefix_suffix
)Returns a string slice with the optional suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix.
Unlike strip_suffix
, this method always returns &str
for easy method chaining,
instead of returning Option<&str>
.
If the string does not end with suffix
, returns the original string unchanged.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Suffix present - removes it
assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
assert_eq!("foofoo".trim_suffix("foo"), "foo");
// Suffix absent - returns original string
assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
1.30.0 · Sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
1.0.0 · Sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
§Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage:
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
Using the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char
)If this string slice is_ascii
, returns it as a slice
of ASCII characters, otherwise returns None
.
Sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char
)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char
)Converts this string slice into a slice of ASCII characters, without checking whether they are valid.
§Safety
Every character in this string must be ASCII, or else this is UB.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");
1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");
1.80.0 · Sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");
1.34.0 · Sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Returns an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_debug());
Both are equivalent to:
println!("❤\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
1.34.0 · Sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Returns an iterator that escapes each char in self
with char::escape_default
.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_default());
Both are equivalent to:
println!("\\u{{2764}}\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
1.34.0 · Sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Returns an iterator that escapes each char in self
with char::escape_unicode
.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_unicode());
Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
Using to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
Sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range
)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range
)Returns the range that a substring points to.
Returns None
if substr
does not point within self
.
Unlike str::find
, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr
is derived from.
This is useful for extending str::split
and similar methods.
Note that this method may return false positives (typically either
Some(0..0)
or Some(self.len()..self.len())
) if substr
is a
zero-length str
that points at the beginning or end of another,
independent, str
.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));
Sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str
)
pub fn as_str(&self) -> &str
str_as_str
)Returns the same string as a string slice &str
.
This method is redundant when used directly on &str
, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str>
or Arc<str>
.
1.0.0 · Sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
1.16.0 · Sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
§Examples
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
1.2.0 · Sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());
A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());
1.2.0 · Sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());
Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());
One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());
1.16.0 · Sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String
by repeating a string n
times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
Trait Implementations§
Source§impl Add<&str> for LeanString
impl Add<&str> for LeanString
Source§impl AddAssign<&str> for LeanString
impl AddAssign<&str> for LeanString
Source§fn add_assign(&mut self, rhs: &str)
fn add_assign(&mut self, rhs: &str)
+=
operation. Read moreSource§impl<'a> Arbitrary<'a> for LeanString
Available on crate feature arbitrary
only.
impl<'a> Arbitrary<'a> for LeanString
arbitrary
only.Source§fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self>
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self>
Self
from the given unstructured data. Read moreSource§fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self>
fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self>
Self
from the entirety of the given
unstructured data. Read moreSource§fn size_hint(depth: usize) -> (usize, Option<usize>)
fn size_hint(depth: usize) -> (usize, Option<usize>)
Unstructured
this type
needs to construct itself. Read moreSource§fn try_size_hint(
depth: usize,
) -> Result<(usize, Option<usize>), MaxRecursionReached>
fn try_size_hint( depth: usize, ) -> Result<(usize, Option<usize>), MaxRecursionReached>
Unstructured
this type
needs to construct itself. Read moreSource§impl AsRef<[u8]> for LeanString
impl AsRef<[u8]> for LeanString
Source§impl AsRef<OsStr> for LeanString
impl AsRef<OsStr> for LeanString
Source§impl AsRef<str> for LeanString
impl AsRef<str> for LeanString
Source§impl Borrow<str> for LeanString
impl Borrow<str> for LeanString
Source§impl Clone for LeanString
A Clone
implementation for LeanString
.
impl Clone for LeanString
A Clone
implementation for LeanString
.
The clone operation is performed using a reference counting mechanism, which means:
- The cloned string shares the same underlying data with the original string
- The cloning process is very efficient (O(1) time complexity)
- No memory allocation occurs during cloning
§Examples
let s1 = LeanString::from("Hello, World!");
let s2 = s1.clone();
assert_eq!(s1, s2);
Source§impl Debug for LeanString
impl Debug for LeanString
Source§impl Default for LeanString
impl Default for LeanString
Source§impl Deref for LeanString
impl Deref for LeanString
Source§impl<'de> Deserialize<'de> for LeanString
Available on crate feature serde
only.
impl<'de> Deserialize<'de> for LeanString
serde
only.Source§fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error>
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error>
Source§impl Display for LeanString
impl Display for LeanString
Source§impl Drop for LeanString
A Drop
implementation for LeanString
.
impl Drop for LeanString
A Drop
implementation for LeanString
.
When the last reference to a LeanString
is dropped:
- If the string is heap-allocated, the heap memory is freed
- The internal state is reset to an empty inline buffer
This ensures no memory leaks occur and all resources are properly cleaned up.
Source§impl<'a> Extend<&'a char> for LeanString
impl<'a> Extend<&'a char> for LeanString
Source§fn extend<T: IntoIterator<Item = &'a char>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = &'a char>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<'a> Extend<&'a str> for LeanString
impl<'a> Extend<&'a str> for LeanString
Source§fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = &'a str>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl Extend<Box<str>> for LeanString
impl Extend<Box<str>> for LeanString
Source§fn extend<T: IntoIterator<Item = Box<str>>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = Box<str>>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<'a> Extend<Cow<'a, str>> for LeanString
impl<'a> Extend<Cow<'a, str>> for LeanString
Source§fn extend<T: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = Cow<'a, str>>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl Extend<LeanString> for LeanString
impl Extend<LeanString> for LeanString
Source§fn extend<T: IntoIterator<Item = LeanString>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = LeanString>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl Extend<LeanString> for String
impl Extend<LeanString> for String
Source§fn extend<T: IntoIterator<Item = LeanString>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = LeanString>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl Extend<String> for LeanString
impl Extend<String> for LeanString
Source§fn extend<T: IntoIterator<Item = String>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = String>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl Extend<char> for LeanString
impl Extend<char> for LeanString
Source§fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T)
fn extend<T: IntoIterator<Item = char>>(&mut self, iter: T)
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl From<&LeanString> for LeanString
impl From<&LeanString> for LeanString
Source§fn from(value: &LeanString) -> Self
fn from(value: &LeanString) -> Self
Source§impl From<&LeanString> for String
impl From<&LeanString> for String
Source§fn from(value: &LeanString) -> Self
fn from(value: &LeanString) -> Self
Source§impl From<&String> for LeanString
impl From<&String> for LeanString
Source§impl From<&str> for LeanString
impl From<&str> for LeanString
Source§impl From<LeanString> for String
impl From<LeanString> for String
Source§fn from(value: LeanString) -> Self
fn from(value: LeanString) -> Self
Source§impl From<String> for LeanString
impl From<String> for LeanString
Source§impl From<char> for LeanString
impl From<char> for LeanString
Source§impl<'a> FromIterator<&'a char> for LeanString
impl<'a> FromIterator<&'a char> for LeanString
Source§impl<'a> FromIterator<&'a str> for LeanString
impl<'a> FromIterator<&'a str> for LeanString
Source§impl FromIterator<Box<str>> for LeanString
impl FromIterator<Box<str>> for LeanString
Source§impl<'a> FromIterator<Cow<'a, str>> for LeanString
impl<'a> FromIterator<Cow<'a, str>> for LeanString
Source§impl FromIterator<LeanString> for LeanString
impl FromIterator<LeanString> for LeanString
Source§fn from_iter<T: IntoIterator<Item = LeanString>>(iter: T) -> Self
fn from_iter<T: IntoIterator<Item = LeanString>>(iter: T) -> Self
Source§impl FromIterator<String> for LeanString
impl FromIterator<String> for LeanString
Source§impl FromIterator<char> for LeanString
impl FromIterator<char> for LeanString
Source§impl FromStr for LeanString
impl FromStr for LeanString
Source§impl Hash for LeanString
impl Hash for LeanString
Source§impl Ord for LeanString
impl Ord for LeanString
Source§impl PartialEq<&str> for LeanString
impl PartialEq<&str> for LeanString
Source§impl PartialEq<LeanString> for &str
impl PartialEq<LeanString> for &str
Source§impl PartialEq<LeanString> for String
impl PartialEq<LeanString> for String
Source§impl PartialEq<LeanString> for str
impl PartialEq<LeanString> for str
Source§impl PartialEq<String> for LeanString
impl PartialEq<String> for LeanString
Source§impl PartialEq<str> for LeanString
impl PartialEq<str> for LeanString
Source§impl PartialEq for LeanString
impl PartialEq for LeanString
Source§impl PartialOrd for LeanString
impl PartialOrd for LeanString
Source§impl Serialize for LeanString
Available on crate feature serde
only.
impl Serialize for LeanString
serde
only.Source§impl Write for LeanString
impl Write for LeanString
impl Eq for LeanString
impl LifetimeFree for LeanString
impl Send for LeanString
impl Sync for LeanString
Auto Trait Implementations§
impl Freeze for LeanString
impl RefUnwindSafe for LeanString
impl Unpin for LeanString
impl UnwindSafe for LeanString
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> ToLeanString for Twhere
T: Display,
impl<T> ToLeanString for Twhere
T: Display,
Source§fn try_to_lean_string(&self) -> Result<LeanString, ToLeanStringError>
fn try_to_lean_string(&self) -> Result<LeanString, ToLeanStringError>
LeanString
. Read moreSource§fn to_lean_string(&self) -> LeanString
fn to_lean_string(&self) -> LeanString
LeanString
. Read more