1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
// #![feature(unboxed_closures)]
const TWO_PI: f64 = std::f64::consts::TAU;
/// Van der Corput sequence
///
/// The `vdc` function is calculating the Van der Corput sequence value for a
/// given index `k` and base `base`. It returns a `f64` value.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::vdc;
///
/// assert_eq!(vdc(11, 2), 0.8125);
/// ```
pub fn vdc(k: usize, base: usize) -> f64 {
let mut res = 0.0;
let mut denom = 1.0;
let mut k = k;
while k != 0 {
let remainder = k % base;
denom *= base as f64;
k /= base;
res += remainder as f64 / denom;
}
res
}
/// The `VdCorput` struct is a generator for the Van der Corput sequence, a low-discrepancy sequence
/// commonly used in quasi-Monte Carlo methods.
///
/// Properties:
///
/// * `count`: The `count` property is used to keep track of the current iteration count of the Van der
/// Corput sequence. It starts at 0 and increments by 1 each time the `pop()` method is called.
/// * `base`: The `base` property represents the base of the Van der Corput sequence. It determines the
/// number of digits used in each element of the sequence.
///
/// # Examples
///
/// ```
/// use lds_rs::VdCorput;
///
/// let mut vgen = VdCorput::new(2);
/// vgen.reseed(10);
/// let result = vgen.pop();
///
/// assert_eq!(result, 0.8125);
/// ```
#[derive(Debug)]
pub struct VdCorput {
count: usize,
base: usize,
}
impl VdCorput {
/// The `new` function creates a new [`VdCorput`] object with a given base for generating the Van der
/// Corput sequence.
///
/// Arguments:
///
/// * `base`: The `base` parameter is an integer value that is used to generate the Van der Corput
/// sequence. It determines the base of the sequence, which affects the distribution and pattern of the
/// generated numbers.
///
/// Returns:
///
/// The `new` function returns a `VdCorput` object.
/// ```
pub const fn new(base: usize) -> Self {
VdCorput { count: 0, base }
}
/// The `pop` function is a member function of the [`VdCorput`] class in Rust that increments the count
/// and calculates the next value in the Van der Corput sequence.
///
/// Returns:
///
/// The `pop` function returns a `f64` value, which is the next value in the Van der Corput sequence.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::VdCorput;
///
/// let mut vd_corput = VdCorput::new(2);
/// assert_eq!(vd_corput.pop(), 0.5);
/// ```
pub fn pop(&mut self) -> f64 {
self.count += 1;
vdc(self.count, self.base)
}
/// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
/// generator to a specific seed value. This allows the sequence generator to start generating the
/// sequence from the beginning or from a specific point in the sequence, depending on the value of the
/// seed.
pub fn reseed(&mut self, seed: usize) {
self.count = seed;
}
}
/// The [`Halton`] struct is a sequence generator that generates points in a 2-dimensional space using the
/// Halton sequence.
///
/// Properties:
///
/// * `vdc0`: A variable of type [`VdCorput`] that represents the Van der Corput sequence generator for
/// the first base. The Van der Corput sequence is a low-discrepancy sequence that is commonly used in
/// quasi-Monte Carlo methods. It generates a sequence of numbers between 0 and
/// * `vdc1`: The `vdc1` property is an instance of the [`VdCorput`] struct, which is responsible for
/// generating the Van der Corput sequence with a base of 3. The Van der Corput sequence is another
/// low-discrepancy sequence commonly used in quasi-Monte Carlo methods
///
/// # Examples
///
/// ```
/// use lds_rs::Halton;
///
/// let mut hgen = Halton::new(2, 3);
/// hgen.reseed(10);
/// let result = hgen.pop();
/// assert_eq!(result[0], 0.8125);
/// ```
#[derive(Debug)]
pub struct Halton {
vdc0: VdCorput,
vdc1: VdCorput,
}
impl Halton {
/// The `new` function creates a new [`Halton`] object with specified bases for generating the Halton
/// sequence.
///
/// Arguments:
///
/// * `base`: The `base` parameter is an array of two `usize` values. These values are used as the bases
/// for generating the Halton sequence. The first value in the array (`base[0]`) is used as the base for
/// generating the first component of the Halton sequence, and the second
///
/// Returns:
///
/// The `new` function returns an instance of the `Halton` struct.
pub fn new(base0: usize, base1: usize) -> Self {
Self {
vdc0: VdCorput::new(base0),
vdc1: VdCorput::new(base1),
}
}
/// Returns the pop of this [`Halton`].
///
/// The `pop()` function is used to generate the next value in the sequence.
/// For example, in the [`VdCorput`] class, `pop()` increments the count and
/// calculates the Van der Corput sequence value for that count and base. In
/// the [`Halton`] class, `pop()` returns the next point in the Halton sequence
/// as a `[f64; 2]`. Similarly, in the `Circle` class, `pop()`
/// returns the next point on the unit circle as a `[f64; 2]`. In
/// the `Sphere` class, `pop()` returns the next point on the unit sphere as a
/// `[f64; 3]`. And in the `Sphere3Hopf` class, `pop()` returns
/// the next point on the 3-sphere using the Hopf fibration as a
/// `[f64; 4]`.
///
/// Returns:
///
/// An array of two f64 values is being returned.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::Halton;
///
/// let mut halton = Halton::new(2, 5);
/// assert_eq!(halton.pop(), [0.5, 0.2]);
/// ```
pub fn pop(&mut self) -> [f64; 2] {
[self.vdc0.pop(), self.vdc1.pop()]
}
/// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
/// generator to a specific seed value. This allows the sequence generator to start generating the
/// sequence from the beginning or from a specific point in the sequence, depending on the value of the
/// seed.
#[allow(dead_code)]
pub fn reseed(&mut self, seed: usize) {
self.vdc0.reseed(seed);
self.vdc1.reseed(seed);
}
}
/// Circle sequence generator
///
/// The `Circle` struct is a generator for a circle sequence using the Van der Corput sequence.
///
/// Properties:
///
/// * `vdc`: A variable of type VdCorput, which is a sequence generator for Van der Corput sequence.
///
/// # Examples
///
/// ```
/// use lds_rs::Circle;
///
/// let mut cgen = Circle::new(2);
/// cgen.reseed(1);
/// let result = cgen.pop();
/// assert_eq!(result[0], 1.0);
/// ```
#[derive(Debug)]
pub struct Circle {
vdc: VdCorput,
}
impl Circle {
/// Creates a new [`Circle`].
///
/// The `new` function creates a new [`Circle`] object with a specified base value.
///
/// Arguments:
///
/// * `base`: The `base` parameter in the `new` function is the base value used to generate the Van
/// der Corput sequence. The Van der Corput sequence is a low-discrepancy sequence used in
/// quasi-Monte Carlo methods. It is generated by reversing the digits of the fractional part of the
///
/// Returns:
///
/// The `new` function is returning an instance of the `Circle` struct.
pub fn new(base: usize) -> Self {
Circle {
vdc: VdCorput::new(base),
}
}
/// Returns the pop of this [`Circle`].
///
/// The `pop` function returns the coordinates of a point on a circle based on a random value.
///
/// Returns:
///
/// The `pop` function returns an array of two `f64` values, representing the sine and cosine of a
/// randomly generated angle.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::Circle;
/// use approx_eq::assert_approx_eq;
///
/// let mut circle = Circle::new(2);
/// let result = circle.pop();
/// assert_approx_eq!(result[0], 0.0);
/// assert_approx_eq!(result[1], -1.0);
/// ```
pub fn pop(&mut self) -> [f64; 2] {
// let two_pi = 2.0/// (-1.0 as f64).acos(); // ???
let theta = self.vdc.pop() * TWO_PI; // map to [0, 2*pi];
[theta.sin(), theta.cos()]
}
/// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
/// generator to a specific seed value. This allows the sequence generator to start generating the
/// sequence from the beginning or from a specific point in the sequence, depending on the value of the
/// seed.
#[allow(dead_code)]
pub fn reseed(&mut self, seed: usize) {
self.vdc.reseed(seed);
}
}
/// Sphere sequence generator
///
/// The `Sphere` struct is a generator for a sequence of points on a sphere.
///
/// Properties:
///
/// * `vdc`: The `vdc` property is an instance of the [`VdCorput`] struct. It is used to generate a Van
/// der Corput sequence, which is a low-discrepancy sequence used for sampling points in a unit
/// interval.
/// * `cirgen`: The `cirgen` property is an instance of the [`Circle`] struct. It is responsible for
/// generating points on a circle.
///
/// # Examples
///
/// ```
/// use lds_rs::Sphere;
///
/// let mut sgen = Sphere::new(&[2, 3]);
/// sgen.reseed(1);
/// let result = sgen.pop();
/// assert_eq!(result[2], -0.5);
/// ```
#[derive(Debug)]
pub struct Sphere {
vdc: VdCorput,
cirgen: Circle,
}
impl Sphere {
/// Creates a new [`Sphere`].
///
/// The function `new` creates a new [`Sphere`] object with a given base.
///
/// Arguments:
///
/// * `base`: The `base` parameter is an array of `usize` values. It is used to initialize the `Sphere`
/// struct. The first element of the `base` array is used to create a new `VdCorput` struct, and the
/// second element is used to create a new `Circle
///
/// Returns:
///
/// The `new` function is returning an instance of the `Sphere` struct.
pub fn new(base: &[usize]) -> Self {
Sphere {
vdc: VdCorput::new(base[0]),
cirgen: Circle::new(base[1]),
}
}
/// Returns the pop of this [`Sphere`].
///
/// The `pop` function returns a random point on a sphere using the VDC and cirgen generators.
///
/// Returns:
///
/// an array of three `f64` values, representing the coordinates of a point on a sphere. The first
/// two values (`sinphi * c` and `sinphi * s`) represent the x and y coordinates, while the third
/// value (`cosphi`) represents the z coordinate.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::Sphere;
/// use approx_eq::assert_approx_eq;
///
/// let mut sphere = Sphere::new(&[2, 3]);
/// let result = sphere.pop();
/// assert_approx_eq!(result[0], 0.8660254037844387);
/// assert_approx_eq!(result[1], -0.5);
/// assert_approx_eq!(result[2], 0.0);
/// ```
pub fn pop(&mut self) -> [f64; 3] {
let cosphi = 2.0 * self.vdc.pop() - 1.0; // map to [-1, 1];
let sinphi = (1.0 - cosphi * cosphi).sqrt();
let [c, s] = self.cirgen.pop();
[sinphi * c, sinphi * s, cosphi]
}
/// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
/// generator to a specific seed value. This allows the sequence generator to start generating the
/// sequence from the beginning or from a specific point in the sequence, depending on the value of the
/// seed.
#[allow(dead_code)]
pub fn reseed(&mut self, seed: usize) {
self.cirgen.reseed(seed);
self.vdc.reseed(seed);
}
}
/// The `Sphere3Hopf` struct is a sequence generator for the S(3) sequence using Hopf coordinates.
///
/// Properties:
///
/// * `vdc0`: An instance of the VdCorput sequence generator used for the first coordinate of the Hopf
/// coordinates.
/// * `vdc1`: The `vdc1` property is an instance of the [`VdCorput`] struct, which is used to generate a
/// Van der Corput sequence. This sequence is a low-discrepancy sequence that is commonly used in
/// numerical methods for generating random numbers. In this case, it is
/// * `vdc2`: The `vdc2` property is an instance of the [`VdCorput`] struct, which is used to generate a
/// Van der Corput sequence. This sequence is a low-discrepancy sequence that is commonly used in
/// numerical methods for generating random numbers. In the context of the `
///
/// The `Sphere3Hopf` class is a sequence generator that generates points on a
/// 3-sphere using the Hopf fibration. It uses three instances of the `VdCorput`
/// class to generate the sequence values and maps them to points on the
/// 3-sphere. The `pop()` method returns the next point on the 3-sphere as a
/// `[f64; 4]`, where the first three elements represent the x, y,
/// and z coordinates of the point, and the fourth element represents the w
/// coordinate. The `reseed()` method is used to reset the state of the sequence
/// generator to a specific seed value.
///
/// # Examples
///
/// ```
/// use lds_rs::Sphere3Hopf;
/// use approx_eq::assert_approx_eq;
///
/// let mut sgen = Sphere3Hopf::new(&[2, 3, 5]);
/// sgen.reseed(0);
/// let result = sgen.pop();
/// assert_approx_eq!(result[2], 0.4472135954999573);
/// ```
#[derive(Debug)]
pub struct Sphere3Hopf {
vdc0: VdCorput,
vdc1: VdCorput,
vdc2: VdCorput,
}
impl Sphere3Hopf {
/// Creates a new [`Sphere3Hopf`].
///
/// The `new` function creates a new instance of the [`Sphere3Hopf`] struct with three `VdCorput`
/// instances initialized with the values from the `base` slice.
///
/// Arguments:
///
/// * `base`: The `base` parameter is an array of three `usize` values. These values are used to
/// initialize three instances of the `VdCorput` struct, which is a type of quasi-random number
/// generator. Each `VdCorput` instance is initialized with a different base value from the
///
/// Returns:
///
/// The `new` function is returning an instance of the `Sphere3Hopf` struct.
pub fn new(base: &[usize]) -> Self {
Sphere3Hopf {
vdc0: VdCorput::new(base[0]),
vdc1: VdCorput::new(base[1]),
vdc2: VdCorput::new(base[2]),
}
}
/// The `pop` function returns a four-element array representing the coordinates of a point on a
/// sphere in 3D space.
///
/// Returns:
///
/// The function `pop` returns an array of four `f64` values.
/// Returns the pop of this [`Sphere3Hopf`].
///
/// The `pop()` function is used to generate the next value in the sequence.
/// For example, in the [`VdCorput`] class, `pop()` increments the count and
/// calculates the Van der Corput sequence value for that count and base. In
/// the [`Halton`] class, `pop()` returns the next point in the Halton sequence
/// as a `[f64; 2]`. Similarly, in the [`Circle`] class, `pop()`
/// returns the next point on the unit circle as a `[f64; 2]`. In
/// the [`Sphere`] class, `pop()` returns the next point on the unit sphere as a
/// `[f64; 3]`. And in the [`Sphere3Hopf`] class, `pop()` returns
/// the next point on the 3-sphere using the Hopf fibration as a `[f64; 4]`.
///
/// # Examples
///
/// ```
/// use lds_rs::Sphere3Hopf;
/// use approx_eq::assert_approx_eq;
///
/// let mut sgen = Sphere3Hopf::new(&[2, 3, 5]);
/// let result = sgen.pop();
/// assert_approx_eq!(result[2], 0.4472135954999573);
pub fn pop(&mut self) -> [f64; 4] {
let phi = self.vdc0.pop() * TWO_PI; // map to [0, 2*pi];
let psy = self.vdc1.pop() * TWO_PI; // map to [0, 2*pi];
let vd = self.vdc2.pop();
let cos_eta = vd.sqrt();
let sin_eta = (1.0 - vd).sqrt();
[
cos_eta * psy.cos(),
cos_eta * psy.sin(),
sin_eta * (phi + psy).cos(),
sin_eta * (phi + psy).sin(),
]
}
/// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
/// generator to a specific seed value. This allows the sequence generator to start generating the
/// sequence from the beginning or from a specific point in the sequence, depending on the value of the
/// seed.
#[allow(dead_code)]
pub fn reseed(&mut self, seed: usize) {
self.vdc0.reseed(seed);
self.vdc1.reseed(seed);
self.vdc2.reseed(seed);
}
}
// First 1000 prime numbers;
#[allow(dead_code)]
pub const PRIME_TABLE: [usize; 1000] = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547,
557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929,
937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039,
1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153,
1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613,
1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741,
1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873,
1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999,
2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113,
2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371,
2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477,
2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647,
2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731,
2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857,
2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001,
3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299,
3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407,
3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659,
3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793,
3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919,
3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201,
4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327,
4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463,
4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603,
4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733,
4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903,
4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153,
5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303,
5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441,
5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569,
5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701,
5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843,
5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131,
6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269,
6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373,
6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553,
6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691,
6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829,
6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109,
7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247,
7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451,
7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559,
7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687,
7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841,
7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919,
];
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_vdc() {
assert_eq!(vdc(1, 2), 0.5);
assert_eq!(vdc(2, 2), 0.25);
assert_eq!(vdc(3, 2), 0.75);
assert_eq!(vdc(4, 2), 0.125);
assert_eq!(vdc(5, 2), 0.625);
}
}