1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
// #![feature(unboxed_closures)]

const TWO_PI: f64 = std::f64::consts::TAU;

/// Van der Corput sequence
///
/// The `vdc` function is calculating the Van der Corput sequence value for a
/// given index `k` and base `base`. It returns a `f64` value.
///
/// # Examples
///
/// ```
/// use lds_rs::lds::vdc;
///
/// assert_eq!(vdc(11, 2), 0.8125);
/// ```
pub fn vdc(k: usize, base: usize) -> f64 {
    let mut res = 0.0;
    let mut denom = 1.0;
    let mut k = k;
    while k != 0 {
        let remainder = k % base;
        denom *= base as f64;
        k /= base;
        res += remainder as f64 / denom;
    }
    res
}

/// The `VdCorput` struct is a generator for the Van der Corput sequence, a low-discrepancy sequence
/// commonly used in quasi-Monte Carlo methods.
///
/// Properties:
///
/// * `count`: The `count` property is used to keep track of the current iteration count of the Van der
/// Corput sequence. It starts at 0 and increments by 1 each time the `pop()` method is called.
/// * `base`: The `base` property represents the base of the Van der Corput sequence. It determines the
/// number of digits used in each element of the sequence.
///
/// # Examples
///
/// ```
/// use lds_rs::VdCorput;
///
/// let mut vgen = VdCorput::new(2);
/// vgen.reseed(10);
/// let result = vgen.pop();
///
/// assert_eq!(result, 0.8125);
/// ```
#[derive(Debug)]
pub struct VdCorput {
    count: usize,
    base: usize,
}

impl VdCorput {
    /// The `new` function creates a new [`VdCorput`] object with a given base for generating the Van der
    /// Corput sequence.
    ///
    /// Arguments:
    ///
    /// * `base`: The `base` parameter is an integer value that is used to generate the Van der Corput
    /// sequence. It determines the base of the sequence, which affects the distribution and pattern of the
    /// generated numbers.
    ///
    /// Returns:
    ///
    /// The `new` function returns a `VdCorput` object.
    /// ```
    pub const fn new(base: usize) -> Self {
        VdCorput { count: 0, base }
    }

    /// The `pop` function is a member function of the [`VdCorput`] class in Rust that increments the count
    /// and calculates the next value in the Van der Corput sequence.
    ///
    /// Returns:
    ///
    /// The `pop` function returns a `f64` value, which is the next value in the Van der Corput sequence.
    ///
    /// # Examples
    ///
    /// ```
    /// use lds_rs::lds::VdCorput;
    ///
    /// let mut vd_corput = VdCorput::new(2);
    /// assert_eq!(vd_corput.pop(), 0.5);
    /// ```
    pub fn pop(&mut self) -> f64 {
        self.count += 1;
        vdc(self.count, self.base)
    }

    /// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
    /// generator to a specific seed value. This allows the sequence generator to start generating the
    /// sequence from the beginning or from a specific point in the sequence, depending on the value of the
    /// seed.
    pub fn reseed(&mut self, seed: usize) {
        self.count = seed;
    }
}

/// The [`Halton`] struct is a sequence generator that generates points in a 2-dimensional space using the
/// Halton sequence.
///
/// Properties:
///
/// * `vdc0`: A variable of type [`VdCorput`] that represents the Van der Corput sequence generator for
/// the first base. The Van der Corput sequence is a low-discrepancy sequence that is commonly used in
/// quasi-Monte Carlo methods. It generates a sequence of numbers between 0 and
/// * `vdc1`: The `vdc1` property is an instance of the [`VdCorput`] struct, which is responsible for
/// generating the Van der Corput sequence with a base of 3. The Van der Corput sequence is another
/// low-discrepancy sequence commonly used in quasi-Monte Carlo methods
///
/// # Examples
///
/// ```
/// use lds_rs::Halton;
///
/// let mut hgen = Halton::new(2, 3);
/// hgen.reseed(10);
/// let result = hgen.pop();
/// assert_eq!(result[0], 0.8125);
/// ```
#[derive(Debug)]
pub struct Halton {
    vdc0: VdCorput,
    vdc1: VdCorput,
}

impl Halton {
    /// The `new` function creates a new [`Halton`] object with specified bases for generating the Halton
    /// sequence.
    ///
    /// Arguments:
    ///
    /// * `base`: The `base` parameter is an array of two `usize` values. These values are used as the bases
    /// for generating the Halton sequence. The first value in the array (`base[0]`) is used as the base for
    /// generating the first component of the Halton sequence, and the second
    ///
    /// Returns:
    ///
    /// The `new` function returns an instance of the `Halton` struct.
    pub fn new(base0: usize, base1: usize) -> Self {
        Self {
            vdc0: VdCorput::new(base0),
            vdc1: VdCorput::new(base1),
        }
    }

    /// Returns the pop of this [`Halton`].
    ///
    /// The `pop()` function is used to generate the next value in the sequence.
    /// For example, in the [`VdCorput`] class, `pop()` increments the count and
    /// calculates the Van der Corput sequence value for that count and base. In
    /// the [`Halton`] class, `pop()` returns the next point in the Halton sequence
    /// as a `[f64; 2]`. Similarly, in the `Circle` class, `pop()`
    /// returns the next point on the unit circle as a `[f64; 2]`. In
    /// the `Sphere` class, `pop()` returns the next point on the unit sphere as a
    /// `[f64; 3]`. And in the `Sphere3Hopf` class, `pop()` returns
    /// the next point on the 3-sphere using the Hopf fibration as a
    /// `[f64; 4]`.
    ///
    /// Returns:
    ///
    /// An array of two f64 values is being returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use lds_rs::lds::Halton;
    ///
    /// let mut halton = Halton::new(2, 5);
    /// assert_eq!(halton.pop(), [0.5, 0.2]);
    /// ```
    pub fn pop(&mut self) -> [f64; 2] {
        [self.vdc0.pop(), self.vdc1.pop()]
    }

    /// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
    /// generator to a specific seed value. This allows the sequence generator to start generating the
    /// sequence from the beginning or from a specific point in the sequence, depending on the value of the
    /// seed.
    #[allow(dead_code)]
    pub fn reseed(&mut self, seed: usize) {
        self.vdc0.reseed(seed);
        self.vdc1.reseed(seed);
    }
}

/// Circle sequence generator
///
/// The `Circle` struct is a generator for a circle sequence using the Van der Corput sequence.
///
/// Properties:
///
/// * `vdc`: A variable of type VdCorput, which is a sequence generator for Van der Corput sequence.
///
/// # Examples
///
/// ```
/// use lds_rs::Circle;
///
/// let mut cgen = Circle::new(2);
/// cgen.reseed(1);
/// let result = cgen.pop();
/// assert_eq!(result[0], 1.0);
/// ```
#[derive(Debug)]
pub struct Circle {
    vdc: VdCorput,
}

impl Circle {
    /// Creates a new [`Circle`].
    ///
    /// The `new` function creates a new [`Circle`] object with a specified base value.
    ///
    /// Arguments:
    ///
    /// * `base`: The `base` parameter in the `new` function is the base value used to generate the Van
    /// der Corput sequence. The Van der Corput sequence is a low-discrepancy sequence used in
    /// quasi-Monte Carlo methods. It is generated by reversing the digits of the fractional part of the
    ///
    /// Returns:
    ///
    /// The `new` function is returning an instance of the `Circle` struct.
    pub fn new(base: usize) -> Self {
        Circle {
            vdc: VdCorput::new(base),
        }
    }

    /// Returns the pop of this [`Circle`].
    ///
    /// The `pop` function returns the coordinates of a point on a circle based on a random value.
    ///
    /// Returns:
    ///
    /// The `pop` function returns an array of two `f64` values, representing the sine and cosine of a
    /// randomly generated angle.
    ///
    /// # Examples
    ///
    /// ```
    /// use lds_rs::lds::Circle;
    /// use approx_eq::assert_approx_eq;
    ///
    /// let mut circle = Circle::new(2);
    /// let result = circle.pop();
    /// assert_approx_eq!(result[0], 0.0);
    /// assert_approx_eq!(result[1], -1.0);
    /// ```
    pub fn pop(&mut self) -> [f64; 2] {
        // let two_pi = 2.0/// (-1.0 as f64).acos(); // ???
        let theta = self.vdc.pop() * TWO_PI; // map to [0, 2*pi];
        [theta.sin(), theta.cos()]
    }

    /// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
    /// generator to a specific seed value. This allows the sequence generator to start generating the
    /// sequence from the beginning or from a specific point in the sequence, depending on the value of the
    /// seed.
    #[allow(dead_code)]
    pub fn reseed(&mut self, seed: usize) {
        self.vdc.reseed(seed);
    }
}

/// Sphere sequence generator
///
/// The `Sphere` struct is a generator for a sequence of points on a sphere.
///
/// Properties:
///
/// * `vdc`: The `vdc` property is an instance of the [`VdCorput`] struct. It is used to generate a Van
/// der Corput sequence, which is a low-discrepancy sequence used for sampling points in a unit
/// interval.
/// * `cirgen`: The `cirgen` property is an instance of the [`Circle`] struct. It is responsible for
/// generating points on a circle.
///
/// # Examples
///
/// ```
/// use lds_rs::Sphere;
///
/// let mut sgen = Sphere::new(&[2, 3]);
/// sgen.reseed(1);
/// let result = sgen.pop();
/// assert_eq!(result[2], -0.5);
/// ```
#[derive(Debug)]
pub struct Sphere {
    vdc: VdCorput,
    cirgen: Circle,
}

impl Sphere {
    /// Creates a new [`Sphere`].
    ///
    /// The function `new` creates a new [`Sphere`] object with a given base.
    ///
    /// Arguments:
    ///
    /// * `base`: The `base` parameter is an array of `usize` values. It is used to initialize the `Sphere`
    /// struct. The first element of the `base` array is used to create a new `VdCorput` struct, and the
    /// second element is used to create a new `Circle
    ///
    /// Returns:
    ///
    /// The `new` function is returning an instance of the `Sphere` struct.
    pub fn new(base: &[usize]) -> Self {
        Sphere {
            vdc: VdCorput::new(base[0]),
            cirgen: Circle::new(base[1]),
        }
    }

    /// Returns the pop of this [`Sphere`].
    ///
    /// The `pop` function returns a random point on a sphere using the VDC and cirgen generators.
    ///
    /// Returns:
    ///
    /// an array of three `f64` values, representing the coordinates of a point on a sphere. The first
    /// two values (`sinphi * c` and `sinphi * s`) represent the x and y coordinates, while the third
    /// value (`cosphi`) represents the z coordinate.
    ///
    /// # Examples
    ///
    /// ```
    /// use lds_rs::lds::Sphere;
    /// use approx_eq::assert_approx_eq;
    ///
    /// let mut sphere = Sphere::new(&[2, 3]);
    /// let result = sphere.pop();
    /// assert_approx_eq!(result[0], 0.8660254037844387);
    /// assert_approx_eq!(result[1], -0.5);
    /// assert_approx_eq!(result[2], 0.0);
    /// ```
    pub fn pop(&mut self) -> [f64; 3] {
        let cosphi = 2.0 * self.vdc.pop() - 1.0; // map to [-1, 1];
        let sinphi = (1.0 - cosphi * cosphi).sqrt();
        let [c, s] = self.cirgen.pop();
        [sinphi * c, sinphi * s, cosphi]
    }

    /// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
    /// generator to a specific seed value. This allows the sequence generator to start generating the
    /// sequence from the beginning or from a specific point in the sequence, depending on the value of the
    /// seed.
    #[allow(dead_code)]
    pub fn reseed(&mut self, seed: usize) {
        self.cirgen.reseed(seed);
        self.vdc.reseed(seed);
    }
}

/// The `Sphere3Hopf` struct is a sequence generator for the S(3) sequence using Hopf coordinates.
///
/// Properties:
///
/// * `vdc0`: An instance of the VdCorput sequence generator used for the first coordinate of the Hopf
/// coordinates.
/// * `vdc1`: The `vdc1` property is an instance of the [`VdCorput`] struct, which is used to generate a
/// Van der Corput sequence. This sequence is a low-discrepancy sequence that is commonly used in
/// numerical methods for generating random numbers. In this case, it is
/// * `vdc2`: The `vdc2` property is an instance of the [`VdCorput`] struct, which is used to generate a
/// Van der Corput sequence. This sequence is a low-discrepancy sequence that is commonly used in
/// numerical methods for generating random numbers. In the context of the `
///
/// The `Sphere3Hopf` class is a sequence generator that generates points on a
/// 3-sphere using the Hopf fibration. It uses three instances of the `VdCorput`
/// class to generate the sequence values and maps them to points on the
/// 3-sphere. The `pop()` method returns the next point on the 3-sphere as a
/// `[f64; 4]`, where the first three elements represent the x, y,
/// and z coordinates of the point, and the fourth element represents the w
/// coordinate. The `reseed()` method is used to reset the state of the sequence
/// generator to a specific seed value.
///
/// # Examples
///
/// ```
/// use lds_rs::Sphere3Hopf;
/// use approx_eq::assert_approx_eq;
///
/// let mut sgen = Sphere3Hopf::new(&[2, 3, 5]);
/// sgen.reseed(0);
/// let result = sgen.pop();
/// assert_approx_eq!(result[2], 0.4472135954999573);
/// ```
#[derive(Debug)]
pub struct Sphere3Hopf {
    vdc0: VdCorput,
    vdc1: VdCorput,
    vdc2: VdCorput,
}

impl Sphere3Hopf {
    /// Creates a new [`Sphere3Hopf`].
    ///
    /// The `new` function creates a new instance of the [`Sphere3Hopf`] struct with three `VdCorput`
    /// instances initialized with the values from the `base` slice.
    ///
    /// Arguments:
    ///
    /// * `base`: The `base` parameter is an array of three `usize` values. These values are used to
    /// initialize three instances of the `VdCorput` struct, which is a type of quasi-random number
    /// generator. Each `VdCorput` instance is initialized with a different base value from the
    ///
    /// Returns:
    ///
    /// The `new` function is returning an instance of the `Sphere3Hopf` struct.
    pub fn new(base: &[usize]) -> Self {
        Sphere3Hopf {
            vdc0: VdCorput::new(base[0]),
            vdc1: VdCorput::new(base[1]),
            vdc2: VdCorput::new(base[2]),
        }
    }

    /// The `pop` function returns a four-element array representing the coordinates of a point on a
    /// sphere in 3D space.
    ///
    /// Returns:
    ///
    /// The function `pop` returns an array of four `f64` values.
    /// Returns the pop of this [`Sphere3Hopf`].
    ///
    /// The `pop()` function is used to generate the next value in the sequence.
    /// For example, in the [`VdCorput`] class, `pop()` increments the count and
    /// calculates the Van der Corput sequence value for that count and base. In
    /// the [`Halton`] class, `pop()` returns the next point in the Halton sequence
    /// as a `[f64; 2]`. Similarly, in the [`Circle`] class, `pop()`
    /// returns the next point on the unit circle as a `[f64; 2]`. In
    /// the [`Sphere`] class, `pop()` returns the next point on the unit sphere as a
    /// `[f64; 3]`. And in the [`Sphere3Hopf`] class, `pop()` returns
    /// the next point on the 3-sphere using the Hopf fibration as a `[f64; 4]`.
    ///
    /// # Examples
    ///
    /// ```
    /// use lds_rs::Sphere3Hopf;
    /// use approx_eq::assert_approx_eq;
    ///
    /// let mut sgen = Sphere3Hopf::new(&[2, 3, 5]);
    /// let result = sgen.pop();
    /// assert_approx_eq!(result[2], 0.4472135954999573);
    pub fn pop(&mut self) -> [f64; 4] {
        let phi = self.vdc0.pop() * TWO_PI; // map to [0, 2*pi];
        let psy = self.vdc1.pop() * TWO_PI; // map to [0, 2*pi];
        let vd = self.vdc2.pop();
        let cos_eta = vd.sqrt();
        let sin_eta = (1.0 - vd).sqrt();
        [
            cos_eta * psy.cos(),
            cos_eta * psy.sin(),
            sin_eta * (phi + psy).cos(),
            sin_eta * (phi + psy).sin(),
        ]
    }

    /// The below code is a Rust function called `reseed` that is used to reset the state of a sequence
    /// generator to a specific seed value. This allows the sequence generator to start generating the
    /// sequence from the beginning or from a specific point in the sequence, depending on the value of the
    /// seed.
    #[allow(dead_code)]
    pub fn reseed(&mut self, seed: usize) {
        self.vdc0.reseed(seed);
        self.vdc1.reseed(seed);
        self.vdc2.reseed(seed);
    }
}

// First 1000 prime numbers;
#[allow(dead_code)]
pub const PRIME_TABLE: [usize; 1000] = [
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
    101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
    197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
    311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421,
    431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547,
    557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
    661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929,
    937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039,
    1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153,
    1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279,
    1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
    1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
    1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613,
    1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741,
    1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873,
    1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999,
    2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113,
    2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
    2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371,
    2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477,
    2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647,
    2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731,
    2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857,
    2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001,
    3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
    3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299,
    3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407,
    3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539,
    3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659,
    3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793,
    3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919,
    3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
    4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201,
    4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327,
    4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463,
    4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603,
    4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733,
    4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903,
    4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
    5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153,
    5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303,
    5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441,
    5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569,
    5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701,
    5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843,
    5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
    6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131,
    6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269,
    6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373,
    6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553,
    6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691,
    6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829,
    6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
    6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109,
    7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247,
    7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451,
    7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559,
    7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687,
    7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841,
    7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919,
];

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_vdc() {
        assert_eq!(vdc(1, 2), 0.5);
        assert_eq!(vdc(2, 2), 0.25);
        assert_eq!(vdc(3, 2), 0.75);
        assert_eq!(vdc(4, 2), 0.125);
        assert_eq!(vdc(5, 2), 0.625);
    }
}