c64

Type Alias c64 

Source
pub type c64 = Complex<f64>;
Expand description

Alias for a Complex<f64>

Aliased Type§

#[repr(C)]
pub struct c64 { pub re: f64, pub im: f64, }

Fields§

§re: f64

Real portion of the complex number

§im: f64

Imaginary portion of the complex number

Trait Implementations§

Source§

impl ITamax for Complex64

Source§

unsafe fn amax(n: i32, x: &[Self], incx: i32) -> i32

Source§

impl RTasum for Complex64

Source§

unsafe fn asum(n: i32, x: &[Self], incx: i32) -> Self::Real

Source§

impl Scalar for c64

Source§

impl Taxpy for Complex64

Source§

unsafe fn axpy( n: i32, alpha: Self, x: &[Self], incx: i32, y: &mut [Self], incy: i32, )

Source§

impl Tgemm for Complex64

Source§

unsafe fn gemm( layout: Layout, transa: Transpose, transb: Transpose, m: i32, n: i32, k: i32, alpha: Self, a: &[Self], lda: i32, b: &[Self], ldb: i32, beta: Self, c: &mut [Self], ldc: i32, )

Source§

impl Tgeqrf for Complex64

Source§

unsafe fn geqrf( layout: Layout, m: i32, n: i32, a: &mut [Self], lda: i32, tau: &mut [Self], ) -> i32

Source§

unsafe fn ungqr( layout: Layout, m: i32, n: i32, k: i32, a: &mut [Self], lda: i32, tau: &[Self], ) -> i32

Source§

impl Tgesv for Complex64

Source§

unsafe fn gesv( layout: Layout, n: i32, nrhs: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], b: &mut [Self], ldb: i32, ) -> i32

Source§

impl Theevx for Complex64

Source§

unsafe fn heevx( layout: Layout, jobz: u8, range: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, vl: Self::Real, vu: Self::Real, il: i32, iu: i32, abstol: Self::Real, m: &mut i32, w: &mut [Self::Real], z: &mut [Self], ldz: i32, work: &mut [Self], lwork: i32, rwork: &mut [Self::Real], iwork: &mut [i32], ifail: &mut [i32], ) -> i32

Symmetric/Hermitian eigenvalue problem - Expert drivers with work arrays Binds to syevx for real scalars and to heevx for complex scalars rwork is not used for syevx and may refer to an empty array
Source§

fn rwork_const() -> isize

Source§

impl Therk for Complex64

Source§

unsafe fn herk( layout: Layout, uplo: Part, trans: Transpose, n: i32, k: i32, alpha: Self::Real, a: &[Self], lda: i32, beta: Self::Real, c: &mut [Self], ldc: i32, )

Hermitian rank k update For real scalars, herk casts Transpose::Conjugate into Transpose::Ordinary and is completely equivalent to syrk
Source§

impl Tnrm2 for Complex64

Source§

unsafe fn nrm2(n: i32, x: &[Self], incx: i32) -> Self::Real

Source§

impl Tsyrk for Complex64

Source§

unsafe fn syrk( layout: Layout, uplo: Part, trans: Transpose, n: i32, k: i32, alpha: Self, a: &[Self], lda: i32, beta: Self, c: &mut [Self], ldc: i32, )