pub struct Polynomial<FE> {
    pub coefficients: Vec<FE>,
}
Expand description

Represents the polynomial c_0 + c_1 * X + c_2 * X^2 + … + c_n * X^n as a vector of coefficients [c_0, c_1, ... , c_n]

Fields§

§coefficients: Vec<FE>

Implementations§

source§

impl<F: IsField> Polynomial<FieldElement<F>>

source

pub fn new(coefficients: &[FieldElement<F>]) -> Self

Creates a new polynomial with the given coefficients

source

pub fn new_monomial(coefficient: FieldElement<F>, degree: usize) -> Self

source

pub fn zero() -> Self

source

pub fn interpolate( xs: &[FieldElement<F>], ys: &[FieldElement<F>] ) -> Result<Self, InterpolateError>

Returns a polynomial that interpolates the points with x coordinates and y coordinates given by xs and ys. xs and ys must be the same length, and xs values should be unique. If not, panics.

source

pub fn evaluate(&self, x: &FieldElement<F>) -> FieldElement<F>

source

pub fn evaluate_slice(&self, input: &[FieldElement<F>]) -> Vec<FieldElement<F>>

source

pub fn degree(&self) -> usize

source

pub fn leading_coefficient(&self) -> FieldElement<F>

source

pub fn coefficients(&self) -> &[FieldElement<F>]

Returns coefficients of the polynomial as an array [c_0, c_1, c_2, …, c_n] that represents the polynomial c_0 + c_1 * X + c_2 * X^2 + … + c_n * X^n

source

pub fn coeff_len(&self) -> usize

source

pub fn pad_with_zero_coefficients_to_length(pa: &mut Self, n: usize)

source

pub fn pad_with_zero_coefficients(pa: &Self, pb: &Self) -> (Self, Self)

Pads polynomial representations with minimum number of zeros to match lengths.

source

pub fn ruffini_division_inplace(&mut self, b: &FieldElement<F>)

Computes quotient with x - b in place.

source

pub fn long_division_with_remainder(self, dividend: &Self) -> (Self, Self)

Computes quotient and remainder of polynomial division.

Output: (quotient, remainder)

source

pub fn div_with_ref(self, dividend: &Self) -> Self

source

pub fn mul_with_ref(&self, factor: &Self) -> Self

source

pub fn scale(&self, factor: &FieldElement<F>) -> Self

source

pub fn scale_coeffs(&self, factor: &FieldElement<F>) -> Self

source

pub fn even_odd_decomposition(&self) -> (Self, Self)

For the given polynomial, returns a tuple (even, odd) of polynomials with the even and odd coefficients respectively. Note that even and odd ARE NOT actually even/odd polynomials themselves.

Example: if poly = 3 X^3 + X^2 + 2X + 1, then poly.even_odd_decomposition = (even, odd) with even = X + 1 and odd = 3X + 1.

In general, the decomposition satisfies the following: poly(x) = even(x^2) + X * odd(x^2)

Trait Implementations§

source§

impl<F: IsField> Add<&FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<&FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<&Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: &Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<&Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, a_polynomial: &Polynomial<FieldElement<F>>) -> Self::Output

Performs the + operation. Read more
source§

impl<F: IsField> Add<&Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: &Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<&Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add( self, a_polynomial: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add( self, a_polynomial: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add(self, other: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<F: IsField> Add<Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the + operator.
source§

fn add( self, a_polynomial: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the + operation. Read more
source§

impl<FE: Clone> Clone for Polynomial<FE>

source§

fn clone(&self) -> Polynomial<FE>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<FE: Debug> Debug for Polynomial<FE>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<F: IsField> Div<Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the / operator.
source§

fn div( self, dividend: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the / operation. Read more
source§

impl<F: IsFFTField> FFTPoly<F> for Polynomial<FieldElement<F>>

source§

fn evaluate_fft( &self, blowup_factor: usize, domain_size: Option<usize> ) -> Result<Vec<FieldElement<F>>, FFTError>

Returns N evaluations of this polynomial using FFT (so the results are P(w^i), with w being a primitive root of unity). N = max(self.coeff_len(), domain_size).next_power_of_two() * blowup_factor. If domain_size is None, it defaults to 0.

source§

fn evaluate_offset_fft( &self, blowup_factor: usize, domain_size: Option<usize>, offset: &FieldElement<F> ) -> Result<Vec<FieldElement<F>>, FFTError>

Returns N evaluations with an offset of this polynomial using FFT (so the results are P(w^i), with w being a primitive root of unity). N = max(self.coeff_len(), domain_size).next_power_of_two() * blowup_factor. If domain_size is None, it defaults to 0.

source§

fn interpolate_fft(fft_evals: &[FieldElement<F>]) -> Result<Self, FFTError>

Returns a new polynomial that interpolates (w^i, fft_evals[i]), with w being a Nth primitive root of unity, and i in 0..N, with N = fft_evals.len(). This is considered to be the inverse operation of Self::evaluate_fft().

source§

fn interpolate_offset_fft( fft_evals: &[FieldElement<F>], offset: &FieldElement<F> ) -> Result<Polynomial<FieldElement<F>>, FFTError>

Returns a new polynomial that interpolates offset (w^i, fft_evals[i]), with w being a Nth primitive root of unity, and i in 0..N, with N = fft_evals.len(). This is considered to be the inverse operation of Self::evaluate_offset_fft().

source§

impl<F: IsField> Mul<&FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, multiplicand: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<&FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, multiplicand: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<&Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, multiplicand: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<&Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, factor: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<&Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, multiplicand: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<&Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, factor: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, multiplicand: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, multiplicand: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, multiplicand: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, factor: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul( self, multiplicand: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Mul<Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the * operator.
source§

fn mul(self, factor: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the * operation. Read more
source§

impl<F: IsField> Neg for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn neg(self) -> Polynomial<FieldElement<F>>

Performs the unary - operation. Read more
source§

impl<F: IsField> Neg for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn neg(self) -> Polynomial<FieldElement<F>>

Performs the unary - operation. Read more
source§

impl<FE: PartialEq> PartialEq<Polynomial<FE>> for Polynomial<FE>

source§

fn eq(&self, other: &Polynomial<FE>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<F: IsField> Sub<&FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<&FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: &FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<&Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: &Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<&Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub( self, substrahend: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<&Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: &Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<&Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub( self, substrahend: &Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<FieldElement<F>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<FieldElement<F>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: FieldElement<F>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<Polynomial<FieldElement<F>>> for &FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<Polynomial<FieldElement<F>>> for &Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub( self, substrahend: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<Polynomial<FieldElement<F>>> for FieldElement<F>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub(self, other: Polynomial<FieldElement<F>>) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<F: IsField> Sub<Polynomial<FieldElement<F>>> for Polynomial<FieldElement<F>>

§

type Output = Polynomial<FieldElement<F>>

The resulting type after applying the - operator.
source§

fn sub( self, substrahend: Polynomial<FieldElement<F>> ) -> Polynomial<FieldElement<F>>

Performs the - operation. Read more
source§

impl<FE: Eq> Eq for Polynomial<FE>

source§

impl<FE> StructuralEq for Polynomial<FE>

source§

impl<FE> StructuralPartialEq for Polynomial<FE>

Auto Trait Implementations§

§

impl<FE> RefUnwindSafe for Polynomial<FE>where FE: RefUnwindSafe,

§

impl<FE> Send for Polynomial<FE>where FE: Send,

§

impl<FE> Sync for Polynomial<FE>where FE: Sync,

§

impl<FE> Unpin for Polynomial<FE>where FE: Unpin,

§

impl<FE> UnwindSafe for Polynomial<FE>where FE: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = mem::align_of::<T>()

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.