pub struct Receiver<T> { /* private fields */ }Expand description
The sending side of a channel, almost identical to crossbeam_channel::Receiver. The only difference is that
you can make one channel depend on another channel. If channel A depends on channel B, channel A
will ACT disconnected when channel B is disconnected. This mean that dependency is not transitive.
If channel Z depends on channel A, channel Z will not ACT disconnected when channel B is disconnected.
§Examples
Channel without dependency:
use std::thread;
use std::time::Duration;
use crossbeam_channel::RecvError;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
thread::spawn(move || {
let _ = s.send(1);
thread::sleep(Duration::from_secs(1));
let _ = s.send(2);
});
assert_eq!(r.recv(), Ok(1)); // Received immediately.
assert_eq!(r.recv(), Ok(2)); // Received after 1 second.
assert_eq!(r.recv(), Err(RecvError)); // All senders have been droppedChannel with dependency:
use std::thread;
use std::time::Duration;
use crossbeam_channel::{RecvError, SendError};
use lambda_channel::channel::{new_channel, new_channel_with_dependency};
let (s_b, r_b) = new_channel(None);
let (s_a, r_a) = new_channel_with_dependency(None, &s_b, &r_b);
s_a.send(0).unwrap();
thread::spawn(move || {
let _ = s_b.send(1);
thread::sleep(Duration::from_secs(1));
let _ = s_b.send(2);
});
assert_eq!(r_b.recv(), Ok(1)); // Received immediately.
assert_eq!(r_b.recv(), Ok(2)); // Received after 1 second.
assert_eq!(r_b.recv(), Err(RecvError)); // All `B` senders have been dropped
// Channel `B` is disconnected, channel `A` disconnects as well
assert_eq!(s_a.send(3), Err(SendError(3)));
assert_eq!(r_a.recv(), Ok(0));
assert_eq!(r_a.recv(), Err(RecvError));Implementations§
Source§impl<T> Receiver<T>
impl<T> Receiver<T>
Sourcepub fn recv(&self) -> Result<T, RecvError>
pub fn recv(&self) -> Result<T, RecvError>
Blocks the current thread until a message is received or the channel is empty and disconnected.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
§Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::RecvError;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
assert_eq!(r.recv(), Ok(5));
assert_eq!(r.recv(), Err(RecvError));Examples found in repository?
41fn main() {
42 let clock = quanta::Clock::new();
43 let start = clock.now();
44
45 let mut map: HashMap<char, AtomicU64> = HashMap::new();
46 let mut all_alphanumeric: Vec<char> = Vec::new();
47 all_alphanumeric.extend('0'..='9');
48 all_alphanumeric.extend('a'..='z');
49 all_alphanumeric.extend('A'..='Z');
50 for char in all_alphanumeric {
51 map.insert(char, AtomicU64::new(0));
52 }
53 let char_counts = Arc::new(map);
54
55 let (tx, rx, thread_pool) = new_lambda_channel(None, None, char_counts.clone(), process_file);
56 thread_pool.set_pool_size(4).unwrap();
57
58 let files = vec![
59 "./a.txt", "./b.txt", "./c.txt", "./d.txt", "./e.txt", "./f.txt",
60 ];
61
62 thread::spawn(move || {
63 for file in files {
64 tx.send(file).unwrap();
65 }
66 });
67
68 while let Ok(msg) = rx.recv() {
69 if let Err(e) = msg {
70 println!("Failed to open file: {}", e);
71 }
72 }
73
74 let mut total_counts: HashMap<char, u64> = HashMap::new();
75 for (k, v) in char_counts.iter() {
76 total_counts.insert(*k, v.load(Ordering::Relaxed));
77 }
78
79 println!("Execution Time: {:?}", start.elapsed());
80 println!("{:?}", total_counts);
81}Sourcepub fn try_recv(&self) -> Result<T, TryRecvError>
pub fn try_recv(&self) -> Result<T, TryRecvError>
Attempts to receive a message from the channel without blocking.
This method will either receive a message from the channel immediately or return an error if the channel is empty.
If called on a zero-capacity channel, this method will receive a message only if there happens to be a send operation on the other side of the channel at the same time.
§Examples
use crossbeam_channel::TryRecvError;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
s.send(5).unwrap();
drop(s);
assert_eq!(r.try_recv(), Ok(5));
assert_eq!(r.try_recv(), Err(TryRecvError::Disconnected));Sourcepub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
Waits for a message to be received from the channel, but only for a limited time.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
§Examples
use std::thread;
use std::time::Duration;
use crossbeam_channel::RecvTimeoutError;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
assert_eq!(
r.recv_timeout(Duration::from_millis(500)),
Err(RecvTimeoutError::Timeout),
);
assert_eq!(
r.recv_timeout(Duration::from_secs(1)),
Ok(5),
);
assert_eq!(
r.recv_timeout(Duration::from_secs(1)),
Err(RecvTimeoutError::Disconnected),
);Sourcepub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
Waits for a message to be received from the channel, but only before a given deadline.
If the channel is empty and not disconnected, this call will block until the receive operation can proceed or the operation times out. If the channel is empty and becomes disconnected, this call will wake up and return an error.
If called on a zero-capacity channel, this method will wait for a send operation to appear on the other side of the channel.
§Examples
use std::thread;
use std::time::{Instant, Duration};
use crossbeam_channel::RecvTimeoutError;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
s.send(5).unwrap();
drop(s);
});
let now = Instant::now();
assert_eq!(
r.recv_deadline(now + Duration::from_millis(500)),
Err(RecvTimeoutError::Timeout),
);
assert_eq!(
r.recv_deadline(now + Duration::from_millis(1500)),
Ok(5),
);
assert_eq!(
r.recv_deadline(now + Duration::from_secs(5)),
Err(RecvTimeoutError::Disconnected),
);Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the channel is empty.
Note: Zero-capacity channels are always empty.
§Examples
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
assert!(r.is_empty());
s.send(0).unwrap();
assert!(!r.is_empty());Sourcepub fn is_full(&self) -> bool
pub fn is_full(&self) -> bool
Returns true if the channel is full.
Note: Zero-capacity channels are always full.
§Examples
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(Some(1));
assert!(!r.is_full());
s.send(0).unwrap();
assert!(r.is_full());Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of messages in the channel.
§Examples
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
assert_eq!(r.len(), 0);
s.send(1).unwrap();
s.send(2).unwrap();
assert_eq!(r.len(), 2);Sourcepub fn capacity(&self) -> Option<usize>
pub fn capacity(&self) -> Option<usize>
Returns the channel’s capacity.
§Examples
use lambda_channel::channel::new_channel;
let (_, r) = new_channel::<i32>(None);
assert_eq!(r.capacity(), None);
let (_, r) = new_channel::<i32>(Some(5));
assert_eq!(r.capacity(), Some(5));
let (_, r) = new_channel::<i32>(Some(0));
assert_eq!(r.capacity(), Some(0));Sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
A blocking iterator over messages in the channel.
Each call to next blocks waiting for the next message and then returns it. However, if
the channel becomes empty and disconnected, it returns None without blocking.
§Examples
use std::thread;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel(None);
thread::spawn(move || {
s.send(1).unwrap();
s.send(2).unwrap();
s.send(3).unwrap();
drop(s); // Disconnect the channel.
});
// Collect all messages from the channel.
// Note that the call to `collect` blocks until the sender is dropped.
let v: Vec<_> = r.iter().collect();
assert_eq!(v, [1, 2, 3]);Sourcepub fn try_iter(&self) -> TryIter<'_, T>
pub fn try_iter(&self) -> TryIter<'_, T>
A non-blocking iterator over messages in the channel.
Each call to next returns a message if there is one ready to be received. The iterator
never blocks waiting for the next message.
§Examples
use std::thread;
use std::time::Duration;
use lambda_channel::channel::new_channel;
let (s, r) = new_channel::<i32>(None);
thread::spawn(move || {
s.send(1).unwrap();
thread::sleep(Duration::from_secs(1));
s.send(2).unwrap();
thread::sleep(Duration::from_secs(2));
s.send(3).unwrap();
});
thread::sleep(Duration::from_secs(2));
// Collect all messages from the channel without blocking.
// The third message hasn't been sent yet so we'll collect only the first two.
let v: Vec<_> = r.try_iter().collect();
assert_eq!(v, [1, 2]);Sourcepub fn same_channel(&self, other: &Receiver<T>) -> bool
pub fn same_channel(&self, other: &Receiver<T>) -> bool
Returns true if receivers belong to the same channel.
§Examples
use lambda_channel::channel::new_channel;
let (_, r) = new_channel::<usize>(None);
let r2 = r.clone();
assert!(r.same_channel(&r2));
let (_, r3) = new_channel(None);
assert!(!r.same_channel(&r3));Trait Implementations§
Auto Trait Implementations§
impl<T> Freeze for Receiver<T>
impl<T> RefUnwindSafe for Receiver<T>
impl<T> Send for Receiver<T>where
T: Send,
impl<T> Sync for Receiver<T>where
T: Send,
impl<T> Unpin for Receiver<T>where
T: Unpin,
impl<T> UnwindSafe for Receiver<T>
Blanket Implementations§
§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§unsafe fn clone_to_uninit(&self, dest: *mut u8)
unsafe fn clone_to_uninit(&self, dest: *mut u8)
clone_to_uninit)