pub struct EigenDecomposition<T> { /* private fields */ }
Expand description
Eigenvalues and eigenvectors of a real matrix.
Ported from JAMA.
If A is symmetric, then A = VDV’ where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V * D * V’ and V * V’ = I.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + imu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that AV = V*D, The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V * D * V^-1 depends upon V.cond().
Implementations§
Auto Trait Implementations§
impl<T> Freeze for EigenDecomposition<T>
impl<T> RefUnwindSafe for EigenDecomposition<T>where
T: RefUnwindSafe,
impl<T> Send for EigenDecomposition<T>where
T: Send,
impl<T> Sync for EigenDecomposition<T>where
T: Sync,
impl<T> Unpin for EigenDecomposition<T>where
T: Unpin,
impl<T> UnwindSafe for EigenDecomposition<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more