pub struct SVD<T> { /* private fields */ }Expand description
Singular Value Decomposition.
Ported from JAMA (with changes).
For an m-by-n matrix A, the singular value decomposition is an m-by-m orthogonal matrix U, an m-by-n block diagonal matrix S, and an n-by-n orthogonal matrix V so that A = USV’.
The singular values, sigma[k] = S[k][k], are ordered so that sigma[0] >= sigma[1] >= … >= sigma[n-1].
The singular value decompostion always exists. The matrix condition number and the effective numerical rank can be computed from this decomposition.
Implementations§
Auto Trait Implementations§
impl<T> Freeze for SVD<T>
impl<T> RefUnwindSafe for SVD<T>where
T: RefUnwindSafe,
impl<T> Send for SVD<T>where
T: Send,
impl<T> Sync for SVD<T>where
T: Sync,
impl<T> Unpin for SVD<T>where
T: Unpin,
impl<T> UnwindSafe for SVD<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more