pub struct Filter<T, DimZ, DimX>where
T: RealField,
DimZ: Dim + DimName,
DimX: Dim + DimName,
DefaultAllocator: Allocator<T, DimX> + Allocator<T, DimX, DimX> + Allocator<T, DimZ, DimX> + Allocator<T, DimZ, DimZ>,{ /* private fields */ }
Implementations§
Source§impl<T, DimZ, DimX> Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> Filter<T, DimZ, DimX>
pub fn new( x: VectorN<T, DimX>, p: MatrixN<T, DimX>, f: MatrixN<T, DimX>, r: MatrixN<T, DimZ>, h: MatrixMN<T, DimZ, DimX>, q: MatrixN<T, DimX>, ) -> Filter<T, DimZ, DimX>
pub fn run( &mut self, z: VectorN<T, DimZ>, ) -> Result<(VectorN<T, DimX>, MatrixN<T, DimX>, VectorN<T, DimZ>, MatrixN<T, DimZ>, MatrixN<T, DimZ>), KfError>
pub fn set_p(&mut self, p: MatrixN<T, DimX>)
pub fn set_x(&mut self, x: VectorN<T, DimX>)
Auto Trait Implementations§
impl<T, DimZ, DimX> !Freeze for Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> !RefUnwindSafe for Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> !Send for Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> !Sync for Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> !Unpin for Filter<T, DimZ, DimX>
impl<T, DimZ, DimX> !UnwindSafe for Filter<T, DimZ, DimX>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.