pub struct ArcStr(/* private fields */);Expand description
A better atomically-reference counted string type.
§Benefits of ArcStr over Arc<str>
-
It’s possible to create a const
ArcStrfrom a literal via thearcstr::literal!macro. This is probably the killer feature, to be honest.These “static”
ArcStrs are zero cost, take no heap allocation, and don’t even need to perform atomic reads/writes when being cloned or dropped (nor at any other time).They even get stored in the read-only memory of your executable, which can be beneficial for performance and memory usage. (In theory your linker may even dedupe these for you, but usually not)
-
ArcStrs fromarcstr::literal!can be turned into&'static strsafely at any time usingArcStr::as_static. (This returns an Option, which isNoneif theArcStrwas not static) -
This should be unsurprising given the literal functionality, but
ArcStr::newis able to be aconstfunction. -
ArcStris thin, e.g. only a single pointer. Great for cases where you want to keep the data structure lightweight or need to do some FFI stuff with it. -
ArcStris totally immutable. No need to lose sleep because you’re afraid of code which thinks it has a right to mutate yourArcs just because it holds the only reference… -
Lower reference counting operations are lower overhead because we don’t support
Weakreferences. This can be a drawback for some use cases, but improves performance for the common case of no-weak-refs.
§What does “zero-cost literals” mean?
In a few places I call the literal arcstrs “zero-cost”. No overhead most
accesses accesses (aside from stuff like as_static which obviously
requires it). and it imposes a extra branch in both clone and drop.
This branch in clone/drop is not on the result of an atomic load, and is
just a normal memory read. This is actually what allows literal/static
ArcStrs to avoid needing to perform any atomic operations in those
functions, which seems likely more than cover the cost.
(Additionally, it’s almost certain that in the future we’ll be able to
reduce the synchronization required for atomic instructions. This is due to
our guarantee of immutability and lack of support for Weak.)
§Usage
§As a const
The big unique feature of ArcStr is the ability to create static/const
ArcStrs. (See the macro docs or the feature
overview
const WOW: ArcStr = arcstr::literal!("cool robot!");
assert_eq!(WOW, "cool robot!");§As a str
(This is not unique to ArcStr, but is a frequent source of confusion I’ve
seen): ArcStr implements Deref<Target = str>, and so all functions and
methods from str work on it, even though we don’t expose them on ArcStr
directly.
let s = ArcStr::from("something");
// These go through `Deref`, so they work even though
// there is no `ArcStr::eq_ignore_ascii_case` function
assert!(s.eq_ignore_ascii_case("SOMETHING"));Additionally, &ArcStr can be passed to any function which accepts &str.
For example:
fn accepts_str(s: &str) {
// s...
}
let test_str: ArcStr = "test".into();
// This works even though `&test_str` is normally an `&ArcStr`
accepts_str(&test_str);
// Of course, this works for functionality from the standard library as well.
let test_but_loud = ArcStr::from("TEST");
assert!(test_str.eq_ignore_ascii_case(&test_but_loud));Implementations§
Source§impl ArcStr
impl ArcStr
Sourcepub fn try_alloc(copy_from: &str) -> Option<ArcStr>
pub fn try_alloc(copy_from: &str) -> Option<ArcStr>
Attempt to copy the provided string into a newly allocated ArcStr, but
return None if we cannot allocate the required memory.
§Examples
let some_big_str = "please pretend this is a very long string";
if let Some(s) = ArcStr::try_alloc(some_big_str) {
do_stuff_with(s);
} else {
// Complain about allocation failure, somehow.
}Sourcepub unsafe fn try_init_with_unchecked<F>(
n: usize,
initializer: F,
) -> Option<ArcStr>
pub unsafe fn try_init_with_unchecked<F>( n: usize, initializer: F, ) -> Option<ArcStr>
Attempt to allocate memory for an ArcStr of length n, and use the
provided callback to fully initialize the provided buffer with valid
UTF-8 text.
This function returns None if memory allocation fails, see
ArcStr::init_with_unchecked for a version which calls
handle_alloc_error.
§Safety
The provided initializer callback must fully initialize the provided
buffer with valid UTF-8 text.
§Examples
let arcstr = unsafe {
ArcStr::try_init_with_unchecked(10, |s: &mut [MaybeUninit<u8>]| {
s.fill(MaybeUninit::new(b'a'));
}).unwrap()
};
assert_eq!(arcstr, "aaaaaaaaaa")Sourcepub unsafe fn init_with_unchecked<F>(n: usize, initializer: F) -> ArcStr
pub unsafe fn init_with_unchecked<F>(n: usize, initializer: F) -> ArcStr
Allocate memory for an ArcStr of length n, and use the provided
callback to fully initialize the provided buffer with valid UTF-8 text.
This function calls
handle_alloc_error if memory
allocation fails, see ArcStr::try_init_with_unchecked for a version
which returns None
§Safety
The provided initializer callback must fully initialize the provided
buffer with valid UTF-8 text.
§Examples
let arcstr = unsafe {
ArcStr::init_with_unchecked(10, |s: &mut [MaybeUninit<u8>]| {
s.fill(MaybeUninit::new(b'a'));
})
};
assert_eq!(arcstr, "aaaaaaaaaa")Sourcepub fn init_with<F>(n: usize, initializer: F) -> Result<ArcStr, Utf8Error>
pub fn init_with<F>(n: usize, initializer: F) -> Result<ArcStr, Utf8Error>
Attempt to allocate memory for an ArcStr of length n, and use the
provided callback to initialize the provided (initially-zeroed) buffer
with valid UTF-8 text.
Note: This function is provided with a zeroed buffer, and performs UTF-8
validation after calling the initializer. While both of these are fast
operations, some high-performance use cases will be better off using
ArcStr::try_init_with_unchecked as the building block.
§Errors
The provided initializer callback must initialize the provided buffer
with valid UTF-8 text, or a UTF-8 error will be returned.
§Examples
let s = ArcStr::init_with(5, |slice| {
slice
.iter_mut()
.zip(b'0'..b'5')
.for_each(|(db, sb)| *db = sb);
}).unwrap();
assert_eq!(s, "01234");Sourcepub fn as_str(&self) -> &str
pub fn as_str(&self) -> &str
Extract a string slice containing our data.
Note: This is an equivalent to our Deref implementation, but can be
more readable than &*s in the cases where a manual invocation of
Deref would be required.
§Examples
let s = ArcStr::from("abc");
assert_eq!(s.as_str(), "abc");Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of this ArcStr in bytes.
§Examples
let a = ArcStr::from("foo");
assert_eq!(a.len(), 3);Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if this ArcStr is empty.
§Examples
assert!(!ArcStr::from("foo").is_empty());
assert!(ArcStr::new().is_empty());Sourcepub fn to_string(&self) -> String
pub fn to_string(&self) -> String
Convert us to a std::string::String.
This is provided as an inherent method to avoid needing to route through
the Display machinery, but is equivalent to ToString::to_string.
§Examples
let s = ArcStr::from("abc");
assert_eq!(s.to_string(), "abc");Sourcepub fn as_bytes(&self) -> &[u8] ⓘ
pub fn as_bytes(&self) -> &[u8] ⓘ
Extract a byte slice containing the string’s data.
§Examples
let foobar = ArcStr::from("foobar");
assert_eq!(foobar.as_bytes(), b"foobar");Sourcepub fn into_raw(this: ArcStr) -> NonNull<()>
pub fn into_raw(this: ArcStr) -> NonNull<()>
Return the raw pointer this ArcStr wraps, for advanced use cases.
Note that in addition to the NonNull constraint expressed in the type
signature, we also guarantee the pointer has an alignment of at least 8
bytes, even on platforms where a lower alignment would be acceptable.
§Examples
let s = ArcStr::from("abcd");
let p = ArcStr::into_raw(s);
// Some time later...
let s = unsafe { ArcStr::from_raw(p) };
assert_eq!(s, "abcd");Sourcepub unsafe fn from_raw(ptr: NonNull<()>) -> ArcStr
pub unsafe fn from_raw(ptr: NonNull<()>) -> ArcStr
The opposite version of Self::into_raw. Still intended only for
advanced use cases.
§Safety
This function must be used on a valid pointer returned from
ArcStr::into_raw. Additionally, you must ensure that a given ArcStr
instance is only dropped once.
§Examples
let s = ArcStr::from("abcd");
let p = ArcStr::into_raw(s);
// Some time later...
let s = unsafe { ArcStr::from_raw(p) };
assert_eq!(s, "abcd");Sourcepub fn ptr_eq(lhs: &ArcStr, rhs: &ArcStr) -> bool
pub fn ptr_eq(lhs: &ArcStr, rhs: &ArcStr) -> bool
Returns true if the two ArcStrs point to the same allocation.
Note that functions like PartialEq check this already, so there’s
no performance benefit to doing something like ArcStr::ptr_eq(&a1, &a2) || (a1 == a2).
Caveat: consts aren’t guaranteed to only occur in an executable a
single time, and so this may be non-deterministic for ArcStr defined
in a const with arcstr::literal!, unless one
was created by a clone() on the other.
§Examples
use arcstr::ArcStr;
let foobar = ArcStr::from("foobar");
let same_foobar = foobar.clone();
let other_foobar = ArcStr::from("foobar");
assert!(ArcStr::ptr_eq(&foobar, &same_foobar));
assert!(!ArcStr::ptr_eq(&foobar, &other_foobar));
const YET_AGAIN_A_DIFFERENT_FOOBAR: ArcStr = arcstr::literal!("foobar");
let strange_new_foobar = YET_AGAIN_A_DIFFERENT_FOOBAR.clone();
let wild_blue_foobar = strange_new_foobar.clone();
assert!(ArcStr::ptr_eq(&strange_new_foobar, &wild_blue_foobar));Sourcepub fn strong_count(this: &ArcStr) -> Option<usize>
pub fn strong_count(this: &ArcStr) -> Option<usize>
Returns the number of references that exist to this ArcStr. If this is
a static ArcStr (For example, one from
arcstr::literal!), returns None.
Despite the difference in return type, this is named to match the method
from the stdlib’s Arc:
Arc::strong_count.
If you aren’t sure how to handle static ArcStr in the context of this
return value, ArcStr::strong_count(&s).unwrap_or(usize::MAX) is
frequently reasonable.
§Safety
This method by itself is safe, but using it correctly requires extra care. Another thread can change the strong count at any time, including potentially between calling this method and acting on the result.
However, it may never change from None to Some or from Some to
None for a given ArcStr — whether or not it is static is determined
at construction, and never changes.
§Examples
§Dynamic ArcStr
let foobar = ArcStr::from("foobar");
assert_eq!(Some(1), ArcStr::strong_count(&foobar));
let also_foobar = ArcStr::clone(&foobar);
assert_eq!(Some(2), ArcStr::strong_count(&foobar));
assert_eq!(Some(2), ArcStr::strong_count(&also_foobar));§Static ArcStr
let baz = arcstr::literal!("baz");
assert_eq!(None, ArcStr::strong_count(&baz));
// Similarly:
assert_eq!(None, ArcStr::strong_count(&ArcStr::default()));Sourcepub fn leak(&self) -> &'static str
pub fn leak(&self) -> &'static str
Convert the ArcStr into a “static” ArcStr, even if it was originally
created from runtime values. The &'static str is returned.
This is useful if you want to use ArcStr::as_static or
ArcStr::is_static on a value only known at runtime.
If the ArcStr is already static, then this is a noop.
§Caveats
Calling this function on an ArcStr will cause us to never free it, thus leaking it’s memory. Doing this excessively can lead to problems.
§Examples
let s = ArcStr::from("foobar");
assert!(!ArcStr::is_static(&s));
assert!(ArcStr::as_static(&s).is_none());
let leaked: &'static str = s.leak();
assert_eq!(leaked, s);
assert!(ArcStr::is_static(&s));
assert_eq!(ArcStr::as_static(&s), Some("foobar"));Sourcepub fn is_static(this: &ArcStr) -> bool
pub fn is_static(this: &ArcStr) -> bool
Returns true if this is a “static” ArcStr. For example, if it was
created from a call to arcstr::literal!),
returned by ArcStr::new, etc.
Static ArcStrs can be converted to &'static str for free using
ArcStr::as_static, without leaking memory — they’re static constants
in the program (somewhere).
§Examples
const STATIC: ArcStr = arcstr::literal!("Electricity!");
assert!(ArcStr::is_static(&STATIC));
let still_static = arcstr::literal!("Shocking!");
assert!(ArcStr::is_static(&still_static));
assert!(
ArcStr::is_static(&still_static.clone()),
"Cloned statics are still static"
);
let nonstatic = ArcStr::from("Grounded...");
assert!(!ArcStr::is_static(&nonstatic));Sourcepub fn as_static(this: &ArcStr) -> Option<&'static str>
pub fn as_static(this: &ArcStr) -> Option<&'static str>
Returns true if this is a “static”/"literal" ArcStr. For example, if
it was created from a call to literal!), returned by
ArcStr::new, etc.
Static ArcStrs can be converted to &'static str for free using
ArcStr::as_static, without leaking memory — they’re static constants
in the program (somewhere).
§Examples
const STATIC: ArcStr = arcstr::literal!("Electricity!");
assert_eq!(ArcStr::as_static(&STATIC), Some("Electricity!"));
// Note that they don't have to be consts, just made using `literal!`:
let still_static = arcstr::literal!("Shocking!");
assert_eq!(ArcStr::as_static(&still_static), Some("Shocking!"));
// Cloning a static still produces a static.
assert_eq!(ArcStr::as_static(&still_static.clone()), Some("Shocking!"));
// But it won't work for strings from other sources.
let nonstatic = ArcStr::from("Grounded...");
assert_eq!(ArcStr::as_static(&nonstatic), None);Sourcepub fn substr(&self, range: impl RangeBounds<usize>) -> Substr
pub fn substr(&self, range: impl RangeBounds<usize>) -> Substr
feature = "substr" Returns a substr of self over the given range.
§Examples
use arcstr::{ArcStr, Substr};
let a = ArcStr::from("abcde");
let b: Substr = a.substr(2..);
assert_eq!(b, "cde");§Panics
If any of the following are untrue, we panic
range.start() <= range.end()range.end() <= self.len()self.is_char_boundary(start) && self.is_char_boundary(end)- These can be conveniently verified in advance using
self.get(start..end).is_some()if needed.
Sourcepub fn substr_from(&self, substr: &str) -> Substr
pub fn substr_from(&self, substr: &str) -> Substr
feature = "substr" Returns a Substr of self over the given &str.
It is not rare to end up with a &str which holds a view into a
ArcStr’s backing data. A common case is when using functionality that
takes and returns &str and are entirely unaware of arcstr, for
example: str::trim().
This function allows you to reconstruct a Substr from a &str which
is a view into this ArcStr’s backing string.
§Examples
use arcstr::{ArcStr, Substr};
let text = ArcStr::from(" abc");
let trimmed = text.trim();
let substr: Substr = text.substr_from(trimmed);
assert_eq!(substr, "abc");
// for illustration
assert!(ArcStr::ptr_eq(substr.parent(), &text));
assert_eq!(substr.range(), 3..6);§Panics
Panics if substr isn’t a view into our memory.
Also panics if substr is a view into our memory but is >= u32::MAX
bytes away from our start, if we’re a 64-bit machine and
substr-usize-indices is not enabled.
Sourcepub fn try_substr_from(&self, substr: &str) -> Option<Substr>
pub fn try_substr_from(&self, substr: &str) -> Option<Substr>
feature = "substr" If possible, returns a Substr of self over the
given &str.
This is a fallible version of ArcStr::substr_from.
It is not rare to end up with a &str which holds a view into a
ArcStr’s backing data. A common case is when using functionality that
takes and returns &str and are entirely unaware of arcstr, for
example: str::trim().
This function allows you to reconstruct a Substr from a &str which
is a view into this ArcStr’s backing string.
§Examples
use arcstr::{ArcStr, Substr};
let text = ArcStr::from(" abc");
let trimmed = text.trim();
let substr: Option<Substr> = text.try_substr_from(trimmed);
assert_eq!(substr.unwrap(), "abc");
// `&str`s not derived from `self` will return None.
let not_substr = text.try_substr_from("abc");
assert!(not_substr.is_none());§Panics
Panics if substr is a view into our memory but is >= u32::MAX bytes
away from our start, if we’re a 64-bit machine and
substr-usize-indices is not enabled.
Sourcepub fn try_substr_using(&self, f: impl FnOnce(&str) -> &str) -> Option<Substr>
pub fn try_substr_using(&self, f: impl FnOnce(&str) -> &str) -> Option<Substr>
feature = "substr" Compute a derived &str a function of &str =>
&str, and produce a Substr of the result if possible.
The function may return either a derived string, or any empty string.
This function is mainly a wrapper around ArcStr::try_substr_from. If
you’re coming to arcstr from the shared_string crate, this is the
moral equivalent of the slice_with function.
§Examples
use arcstr::{ArcStr, Substr};
let text = ArcStr::from(" abc");
let trimmed: Option<Substr> = text.try_substr_using(str::trim);
assert_eq!(trimmed.unwrap(), "abc");
let other = text.try_substr_using(|_s| "different string!");
assert_eq!(other, None);
// As a special case, this is allowed.
let empty = text.try_substr_using(|_s| "");
assert_eq!(empty.unwrap(), "");Sourcepub fn substr_using(&self, f: impl FnOnce(&str) -> &str) -> Substr
pub fn substr_using(&self, f: impl FnOnce(&str) -> &str) -> Substr
feature = "substr" Compute a derived &str a function of &str =>
&str, and produce a Substr of the result.
The function may return either a derived string, or any empty string. Returning anything else will result in a panic.
This function is mainly a wrapper around ArcStr::try_substr_from. If
you’re coming to arcstr from the shared_string crate, this is the
likely closest to the slice_with_unchecked function, but this panics
instead of UB on dodginess.
§Examples
use arcstr::{ArcStr, Substr};
let text = ArcStr::from(" abc");
let trimmed: Substr = text.substr_using(str::trim);
assert_eq!(trimmed, "abc");
// As a special case, this is allowed.
let empty = text.substr_using(|_s| "");
assert_eq!(empty, "");Sourcepub fn repeat(source: &str, n: usize) -> ArcStr
pub fn repeat(source: &str, n: usize) -> ArcStr
Creates an ArcStr by repeating the source string n times
§Panics
This function panics if the capacity overflows, see
try_repeat if this is undesirable.
§Examples
Basic usage:
use arcstr::ArcStr;
let source = "A";
let repeated = ArcStr::repeat(source, 10);
assert_eq!(repeated, "AAAAAAAAAA");A panic upon overflow:
// this will panic at runtime
let huge = ArcStr::repeat("A", usize::MAX);Methods from Deref<Target = str>§
1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if self has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());1.9.0 · Sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()) are
considered to be boundaries.
Returns false if index is greater than self.len().
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));1.91.0 · Sourcepub fn floor_char_boundary(&self, index: usize) -> usize
pub fn floor_char_boundary(&self, index: usize) -> usize
Finds the closest x not exceeding index where is_char_boundary(x) is true.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");1.91.0 · Sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
pub fn ceil_char_boundary(&self, index: usize) -> usize
Finds the closest x not below index where is_char_boundary(x) is true.
If index is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary. See that method
for more details.
§Examples
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");1.0.0 · Sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr.
§Examples
let s = "Hello";
let ptr = s.as_ptr();1.20.0 · Sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());1.20.0 · Sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str.
This is the unchecked alternative to indexing the str.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}1.0.0 · Sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end) instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end) insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str and Index.
This new slice goes from begin to end, including begin but
excluding end.
To get a mutable string slice instead, see the
slice_mut_unchecked method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
beginmust not exceedend.beginandendmust be byte positions within the string slice.beginandendmust lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}1.4.0 · Sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None if that’s not the case.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length1.0.0 · Sourcepub fn chars(&self) -> Chars<'_>
pub fn chars(&self) -> Chars<'_>
Returns an iterator over the chars of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns such an iterator.
It’s important to remember that char represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());Remember, chars might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());1.0.0 · Sourcepub fn char_indices(&self) -> CharIndices<'_>
pub fn char_indices(&self) -> CharIndices<'_>
Returns an iterator over the chars of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns an iterator of both
these chars, as well as their byte positions.
The iterator yields tuples. The position is first, the char is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());Remember, chars might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());1.0.0 · Sourcepub fn bytes(&self) -> Bytes<'_>
pub fn bytes(&self) -> Bytes<'_>
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());1.1.0 · Sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_>
pub fn split_whitespace(&self) -> SplitWhitespace<'_>
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);1.34.0 · Sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
This uses the same definition as char::is_ascii_whitespace.
To split by Unicode Whitespace instead, use split_whitespace.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());Various kinds of ASCII whitespace are considered
(see char::is_ascii_whitespace):
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);1.0.0 · Sourcepub fn lines(&self) -> Lines<'_>
pub fn lines(&self) -> Lines<'_>
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n) or
sequences of a carriage return followed by a line feed (\r\n).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r) not immediately followed by a
line feed (\n) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());1.0.0 · Sourcepub fn lines_any(&self) -> LinesAny<'_>
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_>
Returns an iterator over the lines of a string.
1.8.0 · Sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_>
pub fn encode_utf16(&self) -> EncodeUtf16<'_>
Returns an iterator of u16 over the string encoded
as native endian UTF-16 (without byte-order mark).
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);1.0.0 · Sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a sub-slice of
this string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));1.0.0 · Sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true if the given pattern matches a prefix of this
string slice.
Returns false if it does not.
The pattern can be a &str, in which case this function will return true if
the &str is a prefix of this string slice.
The pattern can also be a char, a slice of chars, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of chars.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));1.0.0 · Sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true if the given pattern matches a suffix of this
string slice.
Returns false if it does not.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));1.0.0 · Sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);1.0.0 · Sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None if the pattern doesn’t match.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);1.0.0 · Sourcepub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
If there are no matches the full string slice is returned as the only item in the iterator.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "AABBCC".split("DD").collect();
assert_eq!(v, ["AABBCC"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);It does not give you:
assert_eq!(d, &["a", "b", "c"]);Use split_whitespace for this behavior.
1.51.0 · Sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>where
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);1.0.0 · Sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the split method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);1.0.0 · Sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);1.0.0 · Sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
Returns an iterator over substrings of self, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
Equivalent to split, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);1.0.0 · Sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>where
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);1.0.0 · Sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);1.52.0 · Sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));1.52.0 · Sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));1.2.0 · Sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);1.2.0 · Sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the matches method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);1.5.0 · Sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>where
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat within self that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char, but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`1.5.0 · Sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
Returns an iterator over the disjoint matches of a pattern within self,
yielded in reverse order along with the index of the match.
For matches of pat within self that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`1.0.0 · Sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());1.30.0 · Sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());1.30.0 · Sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space, which includes newlines.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());1.0.0 · Sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_startReturns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());1.0.0 · Sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_endReturns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());1.0.0 · Sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char, a slice of chars, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");1.30.0 · Sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");1.45.0 · Sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix, returns the substring after the prefix,
wrapped in Some. Unlike trim_start_matches, this method removes the prefix exactly once.
If the string does not start with prefix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));1.45.0 · Sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix, returns the substring before the suffix,
wrapped in Some. Unlike trim_end_matches, this method removes the suffix exactly once.
If the string does not end with suffix, returns None.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));Sourcepub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_prefix<P>(&self, prefix: P) -> &strwhere
P: Pattern,
trim_prefix_suffix)Returns a string slice with the optional prefix removed.
If the string starts with the pattern prefix, returns the substring after the prefix.
Unlike strip_prefix, this method always returns &str for easy method chaining,
instead of returning Option<&str>.
If the string does not start with prefix, returns the original string unchanged.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Prefix present - removes it
assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
assert_eq!("foofoo".trim_prefix("foo"), "foo");
// Prefix absent - returns original string
assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");Sourcepub fn trim_suffix<P>(&self, suffix: P) -> &str
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_suffix<P>(&self, suffix: P) -> &str
trim_prefix_suffix)Returns a string slice with the optional suffix removed.
If the string ends with the pattern suffix, returns the substring before the suffix.
Unlike strip_suffix, this method always returns &str for easy method chaining,
instead of returning Option<&str>.
If the string does not end with suffix, returns the original string unchanged.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Examples
#![feature(trim_prefix_suffix)]
// Suffix present - removes it
assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
assert_eq!("foofoo".trim_suffix("foo"), "foo");
// Suffix absent - returns original string
assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
// Method chaining example
assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");1.30.0 · Sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matchesReturns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");1.0.0 · Sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matchesReturns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, a slice of chars, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");1.0.0 · Sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse is so general, it can cause problems with type
inference. As such, parse is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse can parse into any type that implements the FromStr trait.
§Errors
Will return Err if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage:
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);Using the ‘turbofish’ instead of annotating four:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char)If this string slice is_ascii, returns it as a slice
of ASCII characters, otherwise returns None.
Sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char)Converts this string slice into a slice of ASCII characters, without checking whether they are valid.
§Safety
Every character in this string must be ASCII, or else this is UB.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");1.80.0 · Sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");1.34.0 · Sourcepub fn escape_debug(&self) -> EscapeDebug<'_>
pub fn escape_debug(&self) -> EscapeDebug<'_>
Returns an iterator that escapes each char in self with char::escape_debug.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_debug());Both are equivalent to:
println!("❤\\n!");Using to_string:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");1.34.0 · Sourcepub fn escape_default(&self) -> EscapeDefault<'_>
pub fn escape_default(&self) -> EscapeDefault<'_>
Returns an iterator that escapes each char in self with char::escape_default.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_default());Both are equivalent to:
println!("\\u{{2764}}\\n!");Using to_string:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");1.34.0 · Sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_>
pub fn escape_unicode(&self) -> EscapeUnicode<'_>
Returns an iterator that escapes each char in self with char::escape_unicode.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();Using println! directly:
println!("{}", "❤\n!".escape_unicode());Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");Using to_string:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");Sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range)Returns the range that a substring points to.
Returns None if substr does not point within self.
Unlike str::find, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr is derived from.
This is useful for extending str::split and similar methods.
Note that this method may return false positives (typically either
Some(0..0) or Some(self.len()..self.len())) if substr is a
zero-length str that points at the beginning or end of another,
independent, str.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));Sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str)
pub fn as_str(&self) -> &str
str_as_str)Returns the same string as a string slice &str.
This method is redundant when used directly on &str, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str> or Arc<str>.
1.0.0 · Sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));1.16.0 · Sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen creates a new String, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count times.
§Examples
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));When the pattern doesn’t match, it returns this string slice as String:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));1.2.0 · Sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());1.2.0 · Sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase.
Since some characters can expand into multiple characters when changing
the case, this function returns a String instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());1.16.0 · Sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String by repeating a string n times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());Trait Implementations§
Source§impl<'de> Deserialize<'de> for ArcStr
impl<'de> Deserialize<'de> for ArcStr
Source§fn deserialize<D>(d: D) -> Result<ArcStr, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(d: D) -> Result<ArcStr, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl<__S> FromInputValue<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> FromInputValue<__S> for ArcStrwhere
__S: ScalarValue,
Source§type Error = FieldError<__S>
type Error = FieldError<__S>
Source§fn from_input_value(input: &InputValue<__S>) -> Result<Self, Self::Error>
fn from_input_value(input: &InputValue<__S>) -> Result<Self, Self::Error>
Source§impl<'___a, __S> FromScalarValue<'___a, __S> for ArcStrwhere
__S: ScalarValue,
Self: '___a,
impl<'___a, __S> FromScalarValue<'___a, __S> for ArcStrwhere
__S: ScalarValue,
Self: '___a,
Source§type Error = FieldError<__S>
type Error = FieldError<__S>
ScalarValue.Source§fn from_scalar_value(input: &'___a __S) -> Result<Self, Self::Error>
fn from_scalar_value(input: &'___a __S) -> Result<Self, Self::Error>
ScalarValue. Read moreSource§impl<__S> GraphQLType<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> GraphQLType<__S> for ArcStrwhere
__S: ScalarValue,
Source§impl<__S> GraphQLValue<__S> for ArcStrwhere
__S: ScalarValue,
Self: ToScalarValue<__S>,
impl<__S> GraphQLValue<__S> for ArcStrwhere
__S: ScalarValue,
Self: ToScalarValue<__S>,
Source§type TypeInfo = ()
type TypeInfo = ()
GraphQLValue. Read moreSource§fn resolve(
&self,
info: &(),
selection: Option<&[Selection<'_, __S>]>,
executor: &Executor<'_, '_, Self::Context, __S>,
) -> ExecutionResult<__S>
fn resolve( &self, info: &(), selection: Option<&[Selection<'_, __S>]>, executor: &Executor<'_, '_, Self::Context, __S>, ) -> ExecutionResult<__S>
Source§fn resolve_field(
&self,
_info: &Self::TypeInfo,
_field_name: &str,
_arguments: &Arguments<'_, S>,
_executor: &Executor<'_, '_, Self::Context, S>,
) -> ExecutionResult<S>
fn resolve_field( &self, _info: &Self::TypeInfo, _field_name: &str, _arguments: &Arguments<'_, S>, _executor: &Executor<'_, '_, Self::Context, S>, ) -> ExecutionResult<S>
GraphQLValue. Read moreSource§fn resolve_into_type(
&self,
info: &Self::TypeInfo,
type_name: &str,
selection_set: Option<&[Selection<'_, S>]>,
executor: &Executor<'_, '_, Self::Context, S>,
) -> ExecutionResult<S>
fn resolve_into_type( &self, info: &Self::TypeInfo, type_name: &str, selection_set: Option<&[Selection<'_, S>]>, executor: &Executor<'_, '_, Self::Context, S>, ) -> ExecutionResult<S>
GraphQLValue (being an interface or an union) into a concrete
downstream object type. Read moreSource§fn concrete_type_name(
&self,
context: &Self::Context,
info: &Self::TypeInfo,
) -> String
fn concrete_type_name( &self, context: &Self::Context, info: &Self::TypeInfo, ) -> String
GraphQLType name for this GraphQLValue being an interface,
an union or an object. Read moreSource§impl<__S> GraphQLValueAsync<__S> for ArcStr
impl<__S> GraphQLValueAsync<__S> for ArcStr
Source§fn resolve_async<'b>(
&'b self,
info: &'b Self::TypeInfo,
selection_set: Option<&'b [Selection<'_, __S>]>,
executor: &'b Executor<'_, '_, Self::Context, __S>,
) -> BoxFuture<'b, ExecutionResult<__S>>
fn resolve_async<'b>( &'b self, info: &'b Self::TypeInfo, selection_set: Option<&'b [Selection<'_, __S>]>, executor: &'b Executor<'_, '_, Self::Context, __S>, ) -> BoxFuture<'b, ExecutionResult<__S>>
Source§fn resolve_field_async<'a>(
&'a self,
_info: &'a Self::TypeInfo,
_field_name: &'a str,
_arguments: &'a Arguments<'_, S>,
_executor: &'a Executor<'_, '_, Self::Context, S>,
) -> BoxFuture<'a, ExecutionResult<S>>
fn resolve_field_async<'a>( &'a self, _info: &'a Self::TypeInfo, _field_name: &'a str, _arguments: &'a Arguments<'_, S>, _executor: &'a Executor<'_, '_, Self::Context, S>, ) -> BoxFuture<'a, ExecutionResult<S>>
GraphQLValueAsync. Read moreSource§fn resolve_into_type_async<'a>(
&'a self,
info: &'a Self::TypeInfo,
type_name: &str,
selection_set: Option<&'a [Selection<'a, S>]>,
executor: &'a Executor<'a, 'a, Self::Context, S>,
) -> BoxFuture<'a, ExecutionResult<S>>
fn resolve_into_type_async<'a>( &'a self, info: &'a Self::TypeInfo, type_name: &str, selection_set: Option<&'a [Selection<'a, S>]>, executor: &'a Executor<'a, 'a, Self::Context, S>, ) -> BoxFuture<'a, ExecutionResult<S>>
GraphQLValueAsync (being an interface or an union) into a
concrete downstream object type. Read moreSource§impl<S: ScalarValue> IntoInputValue<S> for ArcStrwhere
ArcStr: ToScalarValue<S>,
impl<S: ScalarValue> IntoInputValue<S> for ArcStrwhere
ArcStr: ToScalarValue<S>,
Source§fn into_input_value(self) -> InputValue<S>
fn into_input_value(self) -> InputValue<S>
InputValue.Source§impl<S: ScalarValue> IntoValue<S> for ArcStrwhere
ArcStr: ToScalarValue<S>,
impl<S: ScalarValue> IntoValue<S> for ArcStrwhere
ArcStr: ToScalarValue<S>,
Source§fn into_value(self) -> Value<S>
fn into_value(self) -> Value<S>
Value.Source§impl<__S> IsInputType<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> IsInputType<__S> for ArcStrwhere
__S: ScalarValue,
Source§impl<__S> IsOutputType<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> IsOutputType<__S> for ArcStrwhere
__S: ScalarValue,
Source§impl Ord for ArcStr
impl Ord for ArcStr
Source§impl<__S> ParseScalarValue<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> ParseScalarValue<__S> for ArcStrwhere
__S: ScalarValue,
Source§fn from_str(token: ScalarToken<'_>) -> ParseScalarResult<__S>
fn from_str(token: ScalarToken<'_>) -> ParseScalarResult<__S>
Source§impl PartialOrd for ArcStr
impl PartialOrd for ArcStr
Source§impl Serialize for ArcStr
impl Serialize for ArcStr
Source§fn serialize<S>(
&self,
ser: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
ser: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
Source§impl<__S> ToInputValue<__S> for ArcStrwhere
__S: ScalarValue,
Self: ToScalarValue<__S>,
impl<__S> ToInputValue<__S> for ArcStrwhere
__S: ScalarValue,
Self: ToScalarValue<__S>,
Source§fn to_input_value(&self) -> InputValue<__S>
fn to_input_value(&self) -> InputValue<__S>
Source§impl<__S> ToScalarValue<__S> for ArcStrwhere
__S: ScalarValue,
impl<__S> ToScalarValue<__S> for ArcStrwhere
__S: ScalarValue,
Source§fn to_scalar_value(&self) -> __S
fn to_scalar_value(&self) -> __S
ScalarValue.impl Eq for ArcStr
impl Send for ArcStr
impl Sync for ArcStr
Auto Trait Implementations§
impl Freeze for ArcStr
impl RefUnwindSafe for ArcStr
impl Unpin for ArcStr
impl UnwindSafe for ArcStr
Blanket Implementations§
Source§impl<A, T> AsBits<T> for A
impl<A, T> AsBits<T> for A
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.Source§impl<T> FmtForward for T
impl<T> FmtForward for T
Source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self to use its Binary implementation when Debug-formatted.Source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self to use its Display implementation when
Debug-formatted.Source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self to use its LowerExp implementation when
Debug-formatted.Source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self to use its LowerHex implementation when
Debug-formatted.Source§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self to use its Octal implementation when Debug-formatted.Source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self to use its Pointer implementation when
Debug-formatted.Source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self to use its UpperExp implementation when
Debug-formatted.Source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self to use its UpperHex implementation when
Debug-formatted.Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
Source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
Source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read moreSource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read moreSource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
Source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
Source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self, then passes self.as_ref() into the pipe function.Source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self, then passes self.as_mut() into the pipe
function.Source§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self, then passes self.deref() into the pipe function.Source§impl<T> Tap for T
impl<T> Tap for T
Source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B> of a value. Read moreSource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B> of a value. Read moreSource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R> view of a value. Read moreSource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R> view of a value. Read moreSource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target of a value. Read moreSource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target of a value. Read moreSource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap() only in debug builds, and is erased in release builds.Source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut() only in debug builds, and is erased in release
builds.Source§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref() only in debug builds, and is erased in release
builds.Source§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut() only in debug builds, and is erased in release
builds.Source§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref() only in debug builds, and is erased in release
builds.Source§impl<T> ToCompactString for Twhere
T: Display,
impl<T> ToCompactString for Twhere
T: Display,
Source§fn try_to_compact_string(&self) -> Result<CompactString, ToCompactStringError>
fn try_to_compact_string(&self) -> Result<CompactString, ToCompactStringError>
ToCompactString::to_compact_string() Read moreSource§fn to_compact_string(&self) -> CompactString
fn to_compact_string(&self) -> CompactString
CompactString. Read moreSource§impl<T> ToHex for T
impl<T> ToHex for T
Source§fn encode_hex<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex<U>(&self) -> Uwhere
U: FromIterator<char>,
self into the result. Lower case
letters are used (e.g. f9b4ca)Source§fn encode_hex_upper<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex_upper<U>(&self) -> Uwhere
U: FromIterator<char>,
self into the result. Upper case
letters are used (e.g. F9B4CA)