pub struct LinearSystem { /* private fields */ }Expand description
A linear system Ax = b with a matrix A and a right-hand side vector b.
Implementations§
Source§impl LinearSystem
impl LinearSystem
Sourcepub fn new(mat: DMatrix<f64>, rhs: DVector<f64>) -> IterSolverResult<Self>
pub fn new(mat: DMatrix<f64>, rhs: DVector<f64>) -> IterSolverResult<Self>
Create a new LinearSystem with a matrix A and a right-hand side vector b.
§Arguments
mat- The matrixA.rhs- The right-hand side vectorb.
§Errors
Returns an error if the matrix is not square or if the matrix and the right-hand side vector do not match.
§Examples
use nalgebra::{DMatrix, DVector};
use iterative_solvers::LinearProblem;
let mat = DMatrix::from_row_slice(2, 2, &[4.0, 1.0, 1.0, 3.0]);
let rhs = DVector::from_vec(vec![1.0, 2.0]);
let problem = LinearProblem::new(mat, rhs).unwrap();Sourcepub fn solve(
&self,
solver: impl IterativeSolver,
) -> IterSolverResult<DVector<f64>>
pub fn solve( &self, solver: impl IterativeSolver, ) -> IterSolverResult<DVector<f64>>
Solve the linear problem Ax = b using the given solver.
§Arguments
solver- The solver to use.
§Errors
Returns an error if the solver fails to solve the linear problem.
§Examples
use nalgebra::{DMatrix, DVector};
use iterative_solvers::{LinearProblem, CG};
let mat = DMatrix::from_row_slice(2, 2, &[4.0, 1.0, 1.0, 3.0]);
let rhs = DVector::from_vec(vec![1.0, 2.0]);
let problem = LinearProblem::new(mat, rhs).unwrap();
let solver = CG::new(&mat, &rhs, 1e-6).unwrap();
let solution = problem.solve(solver).unwrap();Auto Trait Implementations§
impl Freeze for LinearSystem
impl RefUnwindSafe for LinearSystem
impl Send for LinearSystem
impl Sync for LinearSystem
impl Unpin for LinearSystem
impl UnwindSafe for LinearSystem
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.