pub struct IpnetTrie<T> { /* private fields */ }Expand description
Table holding IPv4 and IPv6 network prefixes with value.
Implementations§
Source§impl<T> IpnetTrie<T>
impl<T> IpnetTrie<T>
Sourcepub fn len(&self) -> (usize, usize)
pub fn len(&self) -> (usize, usize)
Returns the number of elements in the table. First value is number of IPv4 networks and second is number of IPv6 networks.
Sourcepub fn insert<N: Into<IpNet>>(&mut self, network: N, data: T) -> Option<T>
pub fn insert<N: Into<IpNet>>(&mut self, network: N, data: T) -> Option<T>
Insert a value for the IpNet. If prefix existed previously, the old value is returned.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::Ipv6Net;
use std::net::Ipv6Addr;
let mut table = IpnetTrie::new();
let network = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
assert_eq!(table.insert(network, "foo"), None);
// Insert duplicate
assert_eq!(table.insert(network, "bar"), Some("foo"));
// Value is replaced
assert_eq!(table.insert(network, "null"), Some("bar"));Sourcepub fn remove<N: Into<IpNet>>(&mut self, network: N) -> Option<T>
pub fn remove<N: Into<IpNet>>(&mut self, network: N) -> Option<T>
Remove a IpNet from table. If prefix existed, the value is returned.
§Examples
use ipnet_trie::IpnetTrie;
use std::net::Ipv6Addr;
use ipnet::Ipv6Net;
let mut table = IpnetTrie::new();
let network = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
assert_eq!(table.insert(network, "foo"), None);
// Remove network from table
assert_eq!(table.remove(network), Some("foo"));
// Network is removed
assert_eq!(table.exact_match(network), None);Sourcepub fn exact_match<N: Into<IpNet>>(&self, network: N) -> Option<&T>
pub fn exact_match<N: Into<IpNet>>(&self, network: N) -> Option<&T>
Get pointer to value from table based on exact network match.
If network is not in table, None is returned.
§Examples
use ipnet_trie::IpnetTrie;
use std::net::Ipv6Addr;
use ipnet::Ipv6Net;
let mut table = IpnetTrie::new();
let network_a = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
let network_b = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 128).unwrap();
assert_eq!(table.insert(network_a, "foo"), None);
// Get value for network from trie
assert_eq!(table.exact_match(network_a), Some(&"foo"));
// Network B doesn not exist in trie
assert_eq!(table.exact_match(network_b), None);Sourcepub fn exact_match_mut<N: Into<IpNet>>(&mut self, network: N) -> Option<&mut T>
pub fn exact_match_mut<N: Into<IpNet>>(&mut self, network: N) -> Option<&mut T>
Get mutable pointer to value from table based on exact network match.
If network is not in table, None is returned.
§Examples
use ipnet_trie::IpnetTrie;
use std::net::Ipv6Addr;
use ipnet::Ipv6Net;
let mut table = IpnetTrie::new();
let network_a = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
let network_b = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 128).unwrap();
assert_eq!(table.insert(network_a, "foo"), None);
// Get value for network from trie
assert_eq!(table.exact_match_mut(network_a), Some(&mut "foo"));
// Network B does not exist in trie
assert_eq!(table.exact_match(network_b), None);Sourcepub fn longest_match(&self, ipnet: &IpNet) -> Option<(IpNet, &T)>
pub fn longest_match(&self, ipnet: &IpNet) -> Option<(IpNet, &T)>
Find most specific IP network in table that contains given IP address. If no network in table contains
given IP address, None is returned.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv6Net};
use std::net::{IpAddr, Ipv6Addr};
let mut table = IpnetTrie::new();
let network = IpNet::new(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0)), 64).unwrap();
let ip_address = Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0x1);
assert_eq!(table.insert(network, "foo"), None);
// Get value for network from table
assert_eq!(table.longest_match(&IpNet::from(ip_address.to_canonical())), Some((network, &"foo")));Sourcepub fn longest_match_mut(&mut self, ipnet: &IpNet) -> Option<(IpNet, &mut T)>
pub fn longest_match_mut(&mut self, ipnet: &IpNet) -> Option<(IpNet, &mut T)>
Find most specific IP network in table that contains given IP address. If no network in table contains
given IP address, None is returned.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv6Net};
use std::net::{IpAddr, Ipv6Addr};
let mut table = IpnetTrie::new();
let network = IpNet::new(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0)), 64).unwrap();
let ip_address = Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0x1);
assert_eq!(table.insert(network, "foo"), None);
// Get value for network from table
assert_eq!(table.longest_match_mut(&IpNet::from(ip_address.to_canonical())), Some((network, &mut "foo")));Sourcepub fn longest_match_ipv4(&self, net: &Ipv4Net) -> Option<(&Ipv4Net, &T)>
pub fn longest_match_ipv4(&self, net: &Ipv4Net) -> Option<(&Ipv4Net, &T)>
Specific version of longest_match for IPv4 address.
Sourcepub fn longest_match_ipv6(&self, net: &Ipv6Net) -> Option<(&Ipv6Net, &T)>
pub fn longest_match_ipv6(&self, net: &Ipv6Net) -> Option<(&Ipv6Net, &T)>
Specific version of longest_match for IPv6 address.
Sourcepub fn longest_match_ipv4_mut(
&mut self,
net: &Ipv4Net,
) -> Option<(&Ipv4Net, &mut T)>
pub fn longest_match_ipv4_mut( &mut self, net: &Ipv4Net, ) -> Option<(&Ipv4Net, &mut T)>
Specific version of longest_match for IPv4 address.
Sourcepub fn longest_match_ipv6_mut(
&mut self,
net: &Ipv6Net,
) -> Option<(&Ipv6Net, &mut T)>
pub fn longest_match_ipv6_mut( &mut self, net: &Ipv6Net, ) -> Option<(&Ipv6Net, &mut T)>
Specific version of longest_match for IPv6 address.
Sourcepub fn matches(&self, ipnet: &IpNet) -> Vec<(IpNet, &T)>
pub fn matches(&self, ipnet: &IpNet) -> Vec<(IpNet, &T)>
Find all IP networks in table that contains given IP address.
Returns iterator of IpNet and reference to value.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv6Net};
use std::net::{IpAddr, Ipv6Addr};
let mut table = IpnetTrie::new();
let network = IpNet::new(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0)), 64).unwrap();
let ip_address = Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0x1);
assert_eq!(table.insert(network, "foo"), None);
// Get value for network from table
assert_eq!(table.matches(&IpNet::from(ip_address.to_canonical())).len(), 1);Sourcepub fn matches_ipv4(&self, net: &Ipv4Net) -> Vec<(&Ipv4Net, &T)>
pub fn matches_ipv4(&self, net: &Ipv4Net) -> Vec<(&Ipv4Net, &T)>
Specific version of matches for IPv4 address.
Sourcepub fn matches_ipv6(&self, net: &Ipv6Net) -> Vec<(&Ipv6Net, &T)>
pub fn matches_ipv6(&self, net: &Ipv6Net) -> Vec<(&Ipv6Net, &T)>
Specific version of matches for IPv6 address.
Sourcepub fn iter(&self) -> impl Iterator<Item = (IpNet, &T)>
pub fn iter(&self) -> impl Iterator<Item = (IpNet, &T)>
Iterator for all networks in table, first are iterated IPv4 and then IPv6 networks. Order is not guaranteed.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv4Net, Ipv6Net};
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
let mut table: IpnetTrie<&str> = IpnetTrie::new();
let network_a = Ipv4Net::new(Ipv4Addr::new(192, 168, 0, 0), 24).unwrap();
assert_eq!(table.insert(network_a, "foo"), None);
let network_b = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
assert_eq!(table.insert(network_b, "foo"), None);
let mut iterator = table.iter();
assert_eq!(iterator.next(), Some((IpNet::V4(network_a), &"foo")));
assert_eq!(iterator.next(), Some((IpNet::V6(network_b), &"foo")));
assert_eq!(iterator.next(), None);Sourcepub fn iter_mut(&mut self) -> impl Iterator<Item = (IpNet, &mut T)>
pub fn iter_mut(&mut self) -> impl Iterator<Item = (IpNet, &mut T)>
Mutable iterator for all networks in table, first are iterated IPv4 and then IPv6 networks. Order is not guaranteed.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv4Net, Ipv6Net};
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
let mut table: IpnetTrie<&str> = IpnetTrie::new();
let network_a = Ipv4Net::new(Ipv4Addr::new(192, 168, 0, 0), 24).unwrap();
assert_eq!(table.insert(network_a, "foo"), None);
let network_b = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
assert_eq!(table.insert(network_b, "foo"), None);
let mut iterator = table.iter_mut();
for (network, value) in iterator {
*value = "bar";
}
assert_eq!(table.exact_match(network_a), Some(&"bar"));
assert_eq!(table.exact_match(network_b), Some(&"bar"));Sourcepub fn iter_ipv4(&self) -> impl Iterator<Item = (&Ipv4Net, &T)>
pub fn iter_ipv4(&self) -> impl Iterator<Item = (&Ipv4Net, &T)>
Iterator for all IPv4 networks in table. Order is not guaranteed.
Sourcepub fn iter_ipv6(&self) -> impl Iterator<Item = (&Ipv6Net, &T)>
pub fn iter_ipv6(&self) -> impl Iterator<Item = (&Ipv6Net, &T)>
Iterator for all IPv6 networks in table. Order is not guaranteed.
Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all pairs (k, v) such that f(ip_network, &mut v) returns false.
§Examples
use ipnet_trie::IpnetTrie;
use ipnet::{IpNet, Ipv4Net, Ipv6Net};
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
let mut table: IpnetTrie<&str> = IpnetTrie::new();
let network_a = Ipv4Net::new(Ipv4Addr::new(192, 168, 0, 0), 24).unwrap();
assert_eq!(table.insert(network_a, "foo"), None);
let network_b = Ipv6Net::new(Ipv6Addr::new(0x2001, 0xdb8, 0xdead, 0xbeef, 0, 0, 0, 0), 64).unwrap();
assert_eq!(table.insert(network_b, "foo"), None);
// Keep just IPv4 networks
table.retain(|network, _| network.network().is_ipv4());
assert_eq!(table.exact_match(network_a), Some(&"foo"));
assert_eq!(table.exact_match(network_b), None);Sourcepub fn ip_count(&self) -> (u32, u128)
pub fn ip_count(&self) -> (u32, u128)
Count the number of unique IPv4 and IPv6 addresses in the trie.
use std::str::FromStr;
use ipnet::{Ipv4Net, Ipv6Net};
use ipnet_trie::IpnetTrie;
let mut table = IpnetTrie::new();
table.insert(Ipv4Net::from_str("192.0.2.129/25").unwrap(), 1);
table.insert(Ipv4Net::from_str("192.0.2.0/24").unwrap(), 1);
table.insert(Ipv4Net::from_str("192.0.2.0/24").unwrap(), 1);
table.insert(Ipv4Net::from_str("192.0.2.0/24").unwrap(), 1);
assert_eq!(table.ip_count(), (256, 0));
table.insert(Ipv4Net::from_str("198.51.100.0/25").unwrap(), 1);
table.insert(Ipv4Net::from_str("198.51.100.64/26").unwrap(), 1);
assert_eq!(table.ip_count(), (384, 0));
table.insert(Ipv4Net::from_str("198.51.100.65/26").unwrap(), 1);
assert_eq!(table.ip_count(), (384, 0));
table.insert(Ipv6Net::from_str("2001:DB80::/48").unwrap(), 1);
assert_eq!(table.ip_count(), (384, 2_u128.pow(80)));
table.insert(Ipv6Net::from_str("2001:DB80::/49").unwrap(), 1);
assert_eq!(table.ip_count(), (384, 2_u128.pow(80)));
table.insert(Ipv6Net::from_str("2001:DB81::/48").unwrap(), 1);
assert_eq!(table.ip_count(), (384, 2_u128.pow(81)));Sourcepub fn get_aggregated_prefixes(&self) -> (Vec<Ipv4Net>, Vec<Ipv6Net>)
pub fn get_aggregated_prefixes(&self) -> (Vec<Ipv4Net>, Vec<Ipv6Net>)
Retrieves the aggregated prefixes for both IPv4 and IPv6 from the given data.
§Returns
A tuple containing two vectors. The first vector contains the aggregated IPv4 prefixes, and the second vector contains the aggregated IPv6 prefixes.
Sourcepub fn diff(&self, other: &Self) -> (Vec<IpNet>, Vec<IpNet>)
pub fn diff(&self, other: &Self) -> (Vec<IpNet>, Vec<IpNet>)
Find the difference between two prefix tries, returning two vectors of IpNets, one for added prefixes, and one for removed prefixes.
- added prefixes: all prefixes in other that are not in self
- removed prefixes: all prefixes in self that are not in other