intmap/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#![forbid(unsafe_code)]

//! Specialized hashmap for integer based keys.
//!
//! For more information see the [README](https://github.com/JesperAxelsson/rust-intmap/blob/master/README.md).
//!
//! <div class="warning">
//! Be aware that no effort is made against DoS attacks.
//! </div>

#[cfg(feature = "serde")]
mod serde;

mod entry;
mod int;
mod int_key;
mod iter;

use core::iter::{IntoIterator, Iterator};
use int::SealedInt;

pub use entry::*;
pub use int::Int;
pub use int_key::IntKey;
pub use iter::*;

// Test examples from the README.
#[doc = include_str!("../README.md")]
#[cfg(doctest)]
pub struct ReadmeDoctests;

/// A hashmap that maps an integer based `K` to `V`.
#[derive(Clone)]
pub struct IntMap<K, V> {
    // The slots for the key/value pairs.
    //
    // The number of slots is what we call "capacity". Two or more key/value pairs occupy the same
    // slot if they have a hash collision.
    // The size of `cache` as binary exponent. The actual size of `cache` is `2^size`.
    cache: Vec<Vec<(K, V)>>,
    // The size of `cache` as binary exponent. The actual size of `cache` is `2^size`.
    size: u32,
    // A bit mask for calculating an index for `cache`. Must be recomputed if `size` changes.
    mod_mask: usize,
    // The number of stored key/value pairs.
    count: usize,
    // The ratio between key/value pairs and available slots that we try to ensure.
    //
    // Multiplied by 1000, e.g. a load factor of 90.9% will result in the value 909.
    load_factor: usize,
}

impl<K, V> IntMap<K, V> {
    /// Creates a new [`IntMap`].
    ///
    /// The [`IntMap`] is initially created with a capacity of 0, so it will not allocate until it
    /// is first inserted into.
    ///
    /// The [`IntMap`] is initially created with a capacity of 0, so it will not allocate until it
    /// is first inserted into.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// assert_eq!(map, IntMap::default());
    /// ```
    pub const fn new() -> Self {
        Self {
            cache: Vec::new(),
            size: 0,
            count: 0,
            mod_mask: 0,
            load_factor: 909, // 90.9%
        }
    }
}

impl<K: IntKey, V> IntMap<K, V> {
    /// Creates a new [`IntMap`] with at least the given capacity.
    ///
    /// If the capacity is 0, the [`IntMap`] will not allocate. Otherwise the capacity is rounded
    /// to the next power of two and space for elements is allocated accordingly.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::with_capacity(20);
    /// ```
    pub fn with_capacity(capacity: usize) -> Self {
        let mut map = Self::new();
        map.reserve(capacity);
        map
    }

    /// Sets the load factor of the [`IntMap`] rounded to the first decimal point.
    ///
    /// A load factor between 0.0 and 1.0 will reduce hash collisions but use more space.
    /// A load factor above 1.0 will tolerate hash collisions and use less space.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::with_capacity(20);
    /// map.set_load_factor(0.909); // Sets load factor to 90.9%
    /// ```
    pub fn set_load_factor(&mut self, load_factor: f32) {
        self.load_factor = (load_factor * 1000.) as usize;
        self.ensure_load_rate();
    }

    /// Returns the current load factor.
    pub fn get_load_factor(&self) -> f32 {
        self.load_factor as f32 / 1000.
    }

    /// Ensures that the [`IntMap`] has space for at least `additional` more elements
    pub fn reserve(&mut self, additional: usize) {
        let capacity = self.count + additional;
        while self.lim() < capacity {
            self.increase_cache();
        }
    }

    /// Inserts a key/value pair into the [`IntMap`].
    ///
    /// This function returns the previous value if any otherwise `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap::<u64, _> = IntMap::new();
    /// assert_eq!(map.insert(21, "Eat my shorts"), None);
    /// assert_eq!(map.insert(21, "Ay, caramba"), Some("Eat my shorts"));
    /// assert_eq!(map.get(21), Some(&"Ay, caramba"));
    /// ```
    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
        self.ensure_load_rate();

        let k = key.into_int();
        let ix = k.calc_index(self.mod_mask, K::PRIME);

        let vals = &mut self.cache[ix];
        let pos = vals.iter().position(|kv| kv.0.into_int() == k);

        let old = if let Some(pos) = pos {
            Some(vals.swap_remove(pos).1)
        } else {
            // Only increase count if we actually add a new entry
            self.count += 1;
            None
        };

        vals.push((key, value));

        old
    }

    /// Insert a key/value pair into the [`IntMap`] if the key is not yet inserted.
    ///
    /// This function returns true if key/value were inserted and false otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap::<u64, _> = IntMap::new();
    /// assert!(map.insert_checked(21, "Eat my shorts"));
    /// assert!(!map.insert_checked(21, "Ay, caramba"));
    /// assert_eq!(map.get(21), Some(&"Eat my shorts"));
    /// ```
    pub fn insert_checked(&mut self, key: K, value: V) -> bool {
        self.ensure_load_rate();

        let k = key.into_int();
        let ix = k.calc_index(self.mod_mask, K::PRIME);

        let vals = &mut self.cache[ix];
        if vals.iter().any(|kv| kv.0.into_int() == k) {
            return false;
        }

        self.count += 1;
        vals.push((key, value));

        true
    }

    /// Gets the value for the given key from the [`IntMap`].
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    /// let val = map.get(21);
    /// assert!(val.is_some());
    /// assert_eq!(*val.unwrap(), 42);
    /// assert!(map.contains_key(21));
    /// ```
    pub fn get(&self, key: K) -> Option<&V> {
        if self.is_empty() {
            return None;
        }

        let k = key.into_int();
        let ix = k.calc_index(self.mod_mask, K::PRIME);

        let vals = &self.cache[ix];

        vals.iter()
            .find_map(|kv| (kv.0.into_int() == k).then(|| &kv.1))
    }

    /// Gets the mutable value for the given key from the [`IntMap`].
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    ///
    /// assert_eq!(*map.get(21).unwrap(), 42);
    /// assert!(map.contains_key(21));
    ///
    /// {
    ///     let mut val = map.get_mut(21).unwrap();
    ///     *val+=1;
    /// }
    ///     assert_eq!(*map.get(21).unwrap(), 43);
    /// ```
    pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
        if self.is_empty() {
            return None;
        }

        let k = key.into_int();
        let ix = k.calc_index(self.mod_mask, K::PRIME);

        let vals = &mut self.cache[ix];

        return vals
            .iter_mut()
            .find_map(|kv| (kv.0.into_int() == k).then(move || &mut kv.1));
    }

    /// Removes the value for given key from the [`IntMap`] and returns it.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    /// let val = map.remove(21);
    /// assert!(val.is_some());
    /// assert_eq!(val.unwrap(), 42);
    /// assert!(!map.contains_key(21));
    /// ```
    pub fn remove(&mut self, key: K) -> Option<V> {
        if self.is_empty() {
            return None;
        }

        let k = key.into_int();
        let ix = k.calc_index(self.mod_mask, K::PRIME);

        let vals = &mut self.cache[ix];

        for i in 0..vals.len() {
            let peek = &vals[i].0;

            if peek.into_int() == k {
                self.count -= 1;
                let kv = vals.swap_remove(i);
                return Some(kv.1);
            }
        }

        None
    }

    /// Returns true if the key is present in the [`IntMap`].
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    /// assert!(map.contains_key(21));
    /// ```
    pub fn contains_key(&self, key: K) -> bool {
        self.get(key).is_some()
    }

    /// Removes all elements from the [`IntMap`].
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    /// map.clear();
    /// assert_eq!(map.len(), 0);
    /// ```
    pub fn clear(&mut self) {
        for vals in &mut self.cache {
            vals.clear();
        }

        self.count = 0;
    }

    /// Retains only the key/value pairs specified by the predicate.
    ///
    /// In other words, remove all elements such that `f(key, &value)` returns false.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(1, 11);
    /// map.insert(2, 12);
    /// map.insert(4, 13);
    ///
    /// // retain only the odd values
    /// map.retain(|k, v| *v % 2 == 1);
    ///
    /// assert_eq!(map.len(), 2);
    /// assert!(map.contains_key(1));
    /// assert!(map.contains_key(4));
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(K, &V) -> bool,
    {
        let mut removed = 0;
        for vals in &mut self.cache {
            vals.retain(|(k, v)| {
                let keep = (f)(*k, v);
                if !keep {
                    removed += 1;
                }
                keep
            });
        }

        self.count -= removed;
    }

    /// Returns true if the [`IntMap`] is empty
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::new();
    /// map.insert(21, 42);
    /// assert!(!map.is_empty());
    /// map.remove(21);
    /// assert!(map.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.count == 0
    }

    //**** Iterators *****

    /// Returns an [`Iterator`] over all key/value pairs.
    pub fn iter(&self) -> Iter<K, V> {
        Iter::new(&self.cache)
    }

    /// Returns an [`Iterator`] over all key/value pairs with mutable value.
    pub fn iter_mut(&mut self) -> IterMut<K, V> {
        IterMut::new(&mut self.cache)
    }

    /// Returns an [`Iterator`] over all keys.
    pub fn keys(&self) -> Keys<K, V> {
        Keys { inner: self.iter() }
    }

    /// Returns an [`Iterator`] over all values.
    pub fn values(&self) -> Values<K, V> {
        Values { inner: self.iter() }
    }

    /// Returns an [`Iterator`] over all mutable values.
    pub fn values_mut(&mut self) -> ValuesMut<K, V> {
        ValuesMut {
            inner: self.iter_mut(),
        }
    }

    /// Returns an [`Iterator`] over all key/value pairs that removes the pairs from the [`IntMap`]
    /// during iteration.
    ///
    /// If the [`Iterator`] is droppend then all remaining key/value pairs will be removed from
    /// the [`IntMap`].
    pub fn drain(&mut self) -> Drain<K, V> {
        Drain::new(&mut self.cache, &mut self.count)
    }

    //**** Internal hash stuff *****

    #[inline(always)]
    fn lim(&self) -> usize {
        if self.size == 0 {
            0
        } else {
            2usize.pow(self.size)
        }
    }

    fn increase_cache(&mut self) {
        self.size += 1;
        let new_lim = self.lim();
        self.mod_mask = new_lim - 1;

        let mut vec: Vec<Vec<(K, V)>> = (0..new_lim).map(|_| Vec::new()).collect();
        std::mem::swap(&mut self.cache, &mut vec);

        for key in vec.into_iter().flatten() {
            let k = key.0.into_int();
            let ix = k.calc_index(self.mod_mask, K::PRIME);

            let vals = &mut self.cache[ix];
            vals.push(key);
        }

        debug_assert!(
            self.cache.len() == self.lim(),
            "cache vector the wrong length, lim: {:?} cache: {:?}",
            self.lim(),
            self.cache.len()
        );
    }

    #[inline]
    fn ensure_load_rate(&mut self) {
        // Handle empty cache to prevent division by zero.
        if self.cache.is_empty() {
            self.increase_cache()
        }

        // Tried using floats here but insert performance tanked.
        while ((self.count * 1000) / self.cache.len()) > self.load_factor {
            self.increase_cache();
        }
    }

    //**** More public methods *****

    /// Returns the number of key/value pairs in the [`IntMap`].
    pub fn len(&self) -> usize {
        self.count
    }

    /// Returns the number of filled slots.
    pub fn load(&self) -> u64 {
        self.cache.iter().filter(|vals| !vals.is_empty()).count() as u64
    }

    /// Returns the ratio between key/value pairs and available slots as percentage.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::IntMap;
    ///
    /// let mut map: IntMap<u64, u64> = IntMap::with_capacity(2);
    /// map.set_load_factor(2.0);
    /// assert_eq!(map.load_rate(), 0.0);
    /// map.insert(1, 42);
    /// assert_eq!(map.load_rate(), 50.0);
    /// map.insert(2, 42);
    /// assert_eq!(map.load_rate(), 100.0);
    /// map.insert(3, 42);
    /// assert_eq!(map.load_rate(), 150.0);
    /// ```
    pub fn load_rate(&self) -> f64 {
        (self.count as f64) / (self.cache.len() as f64) * 100f64
    }

    /// Returns the total number of available slots.
    pub fn capacity(&self) -> usize {
        self.cache.len()
    }

    //**** Testing methods *****

    /// Checks whether the actual count of key/value pairs matches [`IntMap::count`].
    ///
    /// Only for testing.
    #[doc(hidden)]
    pub fn assert_count(&self) -> bool {
        let count = self.cache.iter().flatten().count();

        self.count == count
    }

    /// Returns a new [`IntMap`] that contains only the collisions of the current [`IntMap`].
    ///
    /// Only for testing.
    #[doc(hidden)]
    pub fn collisions(&self) -> IntMap<u64, u64> {
        let mut map = IntMap::new();

        for s in self.cache.iter() {
            let key = s.len() as u64;
            if key > 1 {
                if !map.contains_key(key) {
                    map.insert(key, 1);
                } else {
                    let counter = map.get_mut(key).unwrap();
                    *counter += 1;
                }
            }
        }

        map
    }

    //**** Entry API *****

    /// Gets the [`Entry`] that corresponds to the given key.
    ///
    /// # Examples
    ///
    /// ```
    /// use intmap::{IntMap, Entry};
    ///
    /// let mut counters = IntMap::new();
    ///
    /// for number in [10, 30, 10, 40, 50, 50, 60, 50] {
    ///     let counter = match counters.entry(number) {
    ///         Entry::Occupied(entry) => entry.into_mut(),
    ///         Entry::Vacant(entry) => entry.insert(0),
    ///     };
    ///     *counter += 1;
    /// }
    ///
    /// assert_eq!(counters.get(10), Some(&2));
    /// assert_eq!(counters.get(20), None);
    /// assert_eq!(counters.get(30), Some(&1));
    /// assert_eq!(counters.get(40), Some(&1));
    /// assert_eq!(counters.get(50), Some(&3));
    /// assert_eq!(counters.get(60), Some(&1));
    /// ```
    pub fn entry(&mut self, key: K) -> Entry<K, V> {
        Entry::new(key, self)
    }
}

impl<K, V> Default for IntMap<K, V> {
    fn default() -> Self {
        Self::new()
    }
}

// ***************** Equality *********************

impl<K, V> PartialEq for IntMap<K, V>
where
    K: IntKey,
    V: PartialEq,
{
    fn eq(&self, other: &IntMap<K, V>) -> bool {
        self.iter().all(|(k, a)| other.get(k) == Some(a))
            && other.iter().all(|(k, a)| self.get(k) == Some(a))
    }
}
impl<K: IntKey, V: Eq> Eq for IntMap<K, V> {}

// ***************** Debug *********************

impl<K, V> std::fmt::Debug for IntMap<K, V>
where
    K: IntKey + std::fmt::Debug,
    V: std::fmt::Debug,
{
    fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
        fmt.debug_map().entries(self.iter()).finish()
    }
}