immutable_seq/seq.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
use std::iter;
use std::ops;
use std::convert;
use std::cmp;
use std::fmt;
use lazy::Lazy;
use finger_tree;
use finger_tree::FingerTree;
use node;
use measure::Measure;
#[derive(Debug)]
struct Item<T>(T);
impl<T> Measure<usize> for Item<T> {
fn measure(&self) -> usize {1}
}
/// A data-structure implementing an immutable sequence of values.
///
/// An amortized running time is given for each operation, with *n* referring to the length of the sequence and *i* being the integral index used by some operations. These bounds hold even in a persistent (shared) setting.
///
/// This implementation is based on Haskell's Data.Sequence library (http://hackage.haskell.org/package/containers/docs/Data-Sequence.html), and the following paper:
/// * Ralf Hinze and Ross Paterson, "Finger trees: a simple general-purpose data structure", Journal of Functional Programming 16:2 (2006) pp 197-217. http://staff.city.ac.uk/~ross/papers/FingerTree.html
pub struct Seq<T> (Lazy<FingerTree<Item<T>,usize>>);
impl<T:'static> Seq<T> {
/// The empty sequence. Time: *O(1)*
pub fn empty() -> Seq<T> {
Seq(finger_tree::empty())
}
/// A sequence with a single value. Time *O(1)*
pub fn singleton(x: T) -> Seq<T> {
Seq(finger_tree::single(node::leaf(Item(x))))
}
/// A new sequence that is `self` with `x` added to the front. Time: *O(1)*
pub fn push_front(&self, x: T) -> Seq<T> {
Seq(finger_tree::cons_node(node::leaf(Item(x)), self.inner().clone()))
}
/// A new sequence that is `self` with `x` added to the back. Time: *O(1)*
pub fn push_back(&self, x: T) -> Seq<T> {
Seq(finger_tree::snoc_node(self.inner().clone(), node::leaf(Item(x))))
}
/// The concatenation of `self` with `other`. Time: *O(log(min(n1,n2)))*
pub fn append(&self, other: &Seq<T>) -> Seq<T> {
Seq(finger_tree::tree_tree(self.inner().clone(), other.inner().clone()))
}
/// Is the sequence empty?. Time: *O(1)*
pub fn is_empty(&self) -> bool {
self.inner().measure() == 0
}
/// The number of elements in the sequence. Time: *O(1)*
pub fn len(&self) -> usize {
self.inner().measure()
}
/// The first element in the sequence, if it exists. Time: *O(1)*
pub fn front(&self) -> Option<&T> {
finger_tree::front(self.inner()).map(|&Item(ref x)| x)
}
/// The back element, if it exsts. Time: *O(1)*
pub fn back(&self) -> Option<&T> {
finger_tree::back(self.inner()).map(|&Item(ref x)| x)
}
/// A new sequence that is `self` with the front element removed, together with the front element (if it exists). Time: *O(1)*
pub fn pop_front(&self) -> Seq<T> {
Seq(finger_tree::pop_front(self.inner()))
}
/// A new sequence that is `self` with the back element removed, together with the back element (if it exists). Time: *O(1)*
pub fn pop_back(&self) -> Seq<T> {
Seq(finger_tree::pop_back(self.inner()))
}
/// A new sequence with the element at index `i` replaced by `f(self[i])`. Time: *O(log(min(i,n-i)))*
///
/// If `i` is out of range, returns a clone of `self`.
pub fn adjust<F>(&self, i: usize, func: F) -> Seq<T>
where F: FnOnce(&T) -> T
{
if i >= self.len() {
return self.clone()
}
Seq(finger_tree::adjust(move |&Item(ref x)| Item(func(x)), move |j| {i < j}, 0, self.inner()))
}
/// A new sequence with the element at index `i` replaced by `x`. Time: *O(log(min(i,n-i)))*
///
/// If `i` is out of range, returns a clone of `self`.
pub fn update(&self, i: usize, x: T) -> Seq<T> {
self.adjust(i, move |_| x)
}
/// A new sequence consisting of only the first `count` elements. Time: *O(log(min(count, n - count)))*
///
/// If `count >= self.len()`, then returns a clone of `self`.
pub fn truncate(&self, count: usize) -> Seq<T> {
let (before,_) = self.split(count);
before
}
/// A new sequence consisting of only the last `count` elements. Time: *O(log(min(count,n - count)))*
///
/// If `count >= self.len()`, then returns a clone of `self`.
pub fn skip(&self, count: usize) -> Seq<T> {
let (_,after) = self.split(count);
after
}
/// Two new sequences, consisting of the first `count` elements, and the remaining elements, respectively. Time: *O(log(min(count,n-count)))*
///
/// If `count >= self.len()`, then the first sequence is a clone of `self` and the second is empty.
pub fn split(&self, n: usize) -> (Seq<T>, Seq<T>) {
if n >= self.len() {
return (self.clone(), Seq::empty())
}
let (before,x,after) = finger_tree::split(&move |i| {n < i}, 0, self.inner());
(Seq(before), Seq(finger_tree::cons_node(x.clone(), after)))
}
/// A new sequence with the element at index `i` removed, together with the element at index `i`, if it exists. Time: *O(log(min(i,n-i)))*
///
/// If `i` is out of range, then the returned sequence is a clone of `self`, and the element is `None`.
pub fn remove(&self, i: usize) -> Seq<T> {
if i >= self.len() {
return self.clone()
}
let (before,_,after) = finger_tree::split(&move |j| {i < j}, 0, self.inner());
Seq(finger_tree::tree_tree(before, after))
}
/// A new sequence with `x` inserted at index `i`. Time: *O(log(min(i,n-i)))*
///
/// If `i < self.len()`, then `x` will immediately precede `self[i]` in the new sequence.
///
/// if `i >= self.len()`, then `x` will be the last element in the new sequence.
pub fn insert(&self, i: usize, x: T) -> Seq<T> {
if i >= self.len() {
return self.push_back(x)
}
let (before,y,after) = finger_tree::split(&move |j| {i < j}, 0, self.inner());
let before = finger_tree::snoc_node(before, node::leaf(Item(x)));
let after = finger_tree::cons_node(y.clone(), after);
Seq(finger_tree::tree_tree(before, after))
}
/// Get the element at index `i`, if it exists. Time: *O(log(min(i,n-i)))*
pub fn get(&self, i: usize) -> Option<&T> {
if i >= self.len() {
return None
}
match finger_tree::lookup(move |j| {i < j}, 0, self.inner()) {
(&Item(ref x), _) => Some(x)
}
}
/// An iterator over the sequence. Time: *O(1)*
pub fn iter(&self) -> Iter<T> {
self.into_iter()
}
fn inner(&self) -> &Lazy<FingerTree<Item<T>,usize>> {
match *self {
Seq(ref inner) => inner
}
}
}
/// Creates a `Seq` containing the arguments
///
/// ```
/// # #[macro_use]
/// # extern crate immutable_seq;
/// # use immutable_seq::Seq;
/// # fn main() {
/// let seq: Seq<i32> = seq![1, 2, 3];
/// # }
/// ```
///
/// Alternatively, a `Seq` consisting of several copies of the same value can be created using the following syntax:
///
/// ```
/// # #[macro_use]
/// # extern crate immutable_seq;
/// # use immutable_seq::Seq;
/// # fn main() {
/// let seq: Seq<i32> = seq![1 ; 3];
/// assert_eq!(seq![1 ; 3], seq![1, 1, 1]);
/// # }
/// ```
#[macro_export]
macro_rules! seq {
() => {
$crate::Seq::empty()
};
($e0: expr $(, $e: expr)*) => {
seq!($($e),*).push_front($e0)
};
($e: expr ; $n: expr) => {
::std::iter::repeat($e).take($n).collect::<$crate::Seq<_>>()
};
}
impl<T:'static> Clone for Seq<T> {
fn clone(&self) -> Seq<T> {
Seq(self.inner().clone())
}
}
impl<T:'static> PartialEq for Seq<T>
where T: PartialEq
{
fn eq(&self, other: &Seq<T>) -> bool {
self.iter().eq(other.iter())
}
}
impl<T:'static> Eq for Seq<T>
where T: Eq
{}
impl<T:'static> PartialOrd for Seq<T>
where T: PartialOrd
{
fn partial_cmp(&self, other: &Seq<T>) -> Option<cmp::Ordering> {
self.iter().partial_cmp(other.iter())
}
}
impl<T:'static> Ord for Seq<T>
where T: Ord
{
fn cmp(&self, other: &Seq<T>) -> cmp::Ordering {
self.iter().cmp(other.iter())
}
}
impl<T:'static> fmt::Debug for Seq<T>
where T: fmt::Debug
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_list().entries(self.iter()).finish()
}
}
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
inner: finger_tree::Iter<'a, Item<T>, usize>
}
impl<'a,T:'static> Iter<'a,T> {
fn new(seq: &'a Seq<T>) -> Iter<'a,T> {
Iter {
inner: seq.inner().iter()
}
}
}
impl<'a,T:'a> Iterator for Iter<'a,T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
match self.inner.next() {
None => None,
Some(&Item(ref x)) => Some(x)
}
}
}
impl<'a, T: 'static> iter::IntoIterator for &'a Seq<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a,T> {
Iter::new(self)
}
}
impl<T:'static> iter::FromIterator<T> for Seq<T> {
fn from_iter<I>(iter: I) -> Self
where I: IntoIterator<Item=T> {
let mut iter = iter.into_iter();
let mut seq = Seq::empty();
while let Some(x) = iter.next() {
seq = seq.push_back(x);
}
seq
}
}
impl<T:'static> convert::From<Vec<T>> for Seq<T> {
fn from(v: Vec<T>) -> Seq<T> {
v.into_iter().collect()
}
}
impl<T:'static> ops::Index<usize> for Seq<T> {
type Output = T;
fn index(&self, index: usize) -> &T {
self.get(index).expect("Out of bounds access")
}
}
// impl<T> ops::Index<ops::Range<usize>> for Seq<T> {
// type Output = Seq<T>;
// fn index(&self, index: ops::Range<usize>) -> &Seq<T> {
// if index.start >= index.end {
// Seq::empty()
// } else if index.start == 0 {
// self.index(ops::RangeTo(index.end))
// } else if index.end >= self.len() {
// self.index(ops::RangeFrom(index.start))
// } else {
// self.truncate(index.end).truncate_front(index.end - index.start)
// }
// }
// }
// impl<T> ops::Index<ops::RangeTo<usize>> for Seq<T> {
// type Output = Seq<T>;
// fn index(&self, index: ops::RangeTo<usize>) -> &Seq<T> {
// if index.end >= self.len() {
// self.index(ops::RangeFull)
// } else {
// self.truncate(index.end)
// }
// }
// }
// impl<T> ops::Index<ops::RangeFrom<usize>> for Seq<T> {
// type Output = Seq<T>;
// fn index(&self, index: ops::RangeFrom<usize>) -> &Seq<T> {
// if index.begin >= self.len() {
// Seq::empty()
// }
// if index.begin == 0 {
// self.index(ops::RangeFull)
// } else {
// self.truncate_front(self.len() - index.start)
// }
// }
// }
// impl<T> ops::Index<ops::RangeFull> for Seq<T> {
// type Output = Seq<T>;
// fn index(&self, index: ops::RangeFull) -> &Seq<T> {
// self.clone()
// }
// }