pub struct MLConfig {
pub anomaly_threshold: f64,
pub n_trees: usize,
pub sample_size: usize,
pub enable_behavioral_analysis: bool,
pub enable_pattern_recognition: bool,
pub enable_zero_day_detection: bool,
pub min_training_samples: usize,
pub max_features: usize,
pub random_seed: Option<u64>,
}Expand description
Configuration for ML analysis
Fields§
§anomaly_threshold: f64Anomaly score threshold (0.0-1.0) Higher = fewer false positives, might miss some anomalies
n_trees: usizeNumber of trees for Isolation Forest
sample_size: usizeSample size for each tree
enable_behavioral_analysis: boolEnable behavioral baseline learning
enable_pattern_recognition: boolEnable pattern recognition
enable_zero_day_detection: boolEnable zero-day detection
min_training_samples: usizeMinimum training samples required
max_features: usizeMaximum features to consider
random_seed: Option<u64>Random seed for reproducibility
Trait Implementations§
Source§impl<'de> Deserialize<'de> for MLConfig
impl<'de> Deserialize<'de> for MLConfig
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Auto Trait Implementations§
impl Freeze for MLConfig
impl RefUnwindSafe for MLConfig
impl Send for MLConfig
impl Sync for MLConfig
impl Unpin for MLConfig
impl UnwindSafe for MLConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more