pub struct ScriptTime<T = ()> { /* private fields */ }
Expand description

可能帶著資料的時間。 如果有資料,代表「這些資料是新的產生,應儲存起來但還未存」 如果沒資料,就視為上次儲存的一個快照,只記得時間就好,因為我們通常不會需要上一次存下的資料

Implementations§

source§

impl<T> ScriptTime<T>

source

pub fn now(data: T) -> Self

source

pub fn new_or(time: Option<NaiveDateTime>, default: Self) -> Self

source

pub fn new(time: NaiveDateTime) -> Self

source

pub fn data(&self) -> Option<&T>

source

pub fn has_changed(&self) -> bool

Methods from Deref<Target = NaiveDateTime>§

source

pub fn date(&self) -> NaiveDate

Retrieves a date component.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap());
source

pub fn time(&self) -> NaiveTime

Retrieves a time component.

Example
use chrono::{NaiveDate, NaiveTime};

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap();
assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap());
source

pub fn timestamp(&self) -> i64

Returns the number of non-leap seconds since the midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 980).unwrap();
assert_eq!(dt.timestamp(), 1);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_opt(1, 46, 40).unwrap();
assert_eq!(dt.timestamp(), 1_000_000_000);

let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_opt(23, 59, 59).unwrap();
assert_eq!(dt.timestamp(), -1);

let dt = NaiveDate::from_ymd_opt(-1, 1, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
assert_eq!(dt.timestamp(), -62198755200);
source

pub fn timestamp_millis(&self) -> i64

Returns the number of non-leap milliseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_millis(), 1_444);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_milli_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);

let dt = NaiveDate::from_ymd_opt(1969, 12, 31).unwrap().and_hms_milli_opt(23, 59, 59, 100).unwrap();
assert_eq!(dt.timestamp_millis(), -900);
source

pub fn timestamp_micros(&self) -> i64

Returns the number of non-leap microseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_micro_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_444);

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_micro_opt(1, 46, 40, 555).unwrap();
assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
source

pub fn timestamp_nanos(&self) -> i64

👎Deprecated since 0.4.31: use timestamp_nanos_opt() instead

Returns the number of non-leap nanoseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Panics

An i64 with nanosecond precision can span a range of ~584 years. This function panics on an out of range NaiveDateTime.

The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.

source

pub fn timestamp_nanos_opt(&self) -> Option<i64>

Returns the number of non-leap nanoseconds since midnight on January 1, 1970.

Note that this does not account for the timezone! The true “UNIX timestamp” would count seconds since the midnight UTC on the epoch.

Errors

An i64 with nanosecond precision can span a range of ~584 years. This function returns None on an out of range NaiveDateTime.

The dates that can be represented as nanoseconds are between 1677-09-21T00:12:44.0 and 2262-04-11T23:47:16.854775804.

Example
use chrono::{NaiveDate, NaiveDateTime};

let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_nano_opt(0, 0, 1, 444).unwrap();
assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));

let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_nano_opt(1, 46, 40, 555).unwrap();

const A_BILLION: i64 = 1_000_000_000;
let nanos = dt.timestamp_nanos_opt().unwrap();
assert_eq!(nanos, 1_000_000_000_000_000_555);
assert_eq!(
    Some(dt),
    NaiveDateTime::from_timestamp_opt(nanos / A_BILLION, (nanos % A_BILLION) as u32)
);
source

pub fn timestamp_subsec_millis(&self) -> u32

Returns the number of milliseconds since the last whole non-leap second.

The return value ranges from 0 to 999, or for leap seconds, to 1,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 123);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_millis(), 1_234);
source

pub fn timestamp_subsec_micros(&self) -> u32

Returns the number of microseconds since the last whole non-leap second.

The return value ranges from 0 to 999,999, or for leap seconds, to 1,999,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 123_456);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_micros(), 1_234_567);
source

pub fn timestamp_subsec_nanos(&self) -> u32

Returns the number of nanoseconds since the last whole non-leap second.

The return value ranges from 0 to 999,999,999, or for leap seconds, to 1,999,999,999.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_nano_opt(9, 10, 11, 123_456_789).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789);

let dt = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_nano_opt(8, 59, 59, 1_234_567_890).unwrap();
assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890);
source

pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>where I: Iterator<Item = B> + Clone, B: Borrow<Item<'a>>,

Formats the combined date and time with the specified formatting items. Otherwise it is the same as the ordinary format method.

The Iterator of items should be Cloneable, since the resulting DelayedFormat value may be formatted multiple times.

Example
use chrono::NaiveDate;
use chrono::format::strftime::StrftimeItems;

let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S");
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04");
assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(),    "2015-09-05 23:56:04");

The resulting DelayedFormat can be formatted directly via the Display trait.

assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04");
source

pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>

Formats the combined date and time with the specified format string. See the format::strftime module on the supported escape sequences.

This returns a DelayedFormat, which gets converted to a string only when actual formatting happens. You may use the to_string method to get a String, or just feed it into print! and other formatting macros. (In this way it avoids the redundant memory allocation.)

A wrong format string does not issue an error immediately. Rather, converting or formatting the DelayedFormat fails. You are recommended to immediately use DelayedFormat for this reason.

Example
use chrono::NaiveDate;

let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap();
assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04");
assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5");

The resulting DelayedFormat can be formatted directly via the Display trait.

assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04");
assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5");
source

pub fn and_local_timezone<Tz>(&self, tz: Tz) -> LocalResult<DateTime<Tz>>where Tz: TimeZone,

Converts the NaiveDateTime into the timezone-aware DateTime<Tz> with the provided timezone, if possible.

This can fail in cases where the local time represented by the NaiveDateTime is not a valid local timestamp in the target timezone due to an offset transition for example if the target timezone had a change from +00:00 to +01:00 occuring at 2015-09-05 22:59:59, then a local time of 2015-09-05 23:56:04 could never occur. Similarly, if the offset transitioned in the opposite direction then there would be two local times of 2015-09-05 23:56:04, one at +00:00 and one at +01:00.

Example
use chrono::{NaiveDate, FixedOffset};
let hour = 3600;
let tz = FixedOffset::east_opt(5 * hour).unwrap();
let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap().and_local_timezone(tz).unwrap();
assert_eq!(dt.timezone(), tz);
source

pub fn and_utc(&self) -> DateTime<Utc>

Converts the NaiveDateTime into the timezone-aware DateTime<Utc>.

Example
use chrono::{NaiveDate, Utc};
let dt = NaiveDate::from_ymd_opt(2023, 1, 30).unwrap().and_hms_opt(19, 32, 33).unwrap().and_utc();
assert_eq!(dt.timezone(), Utc);
source

pub const MIN: NaiveDateTime = _

source

pub const MAX: NaiveDateTime = _

source

pub const UNIX_EPOCH: NaiveDateTime = _

Trait Implementations§

source§

impl<T: Clone> Clone for ScriptTime<T>

source§

fn clone(&self) -> ScriptTime<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug> Debug for ScriptTime<T>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<T> Deref for ScriptTime<T>

§

type Target = NaiveDateTime

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.
source§

impl<T> Ord for ScriptTime<T>

source§

fn cmp(&self, other: &Self) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Selfwhere Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
source§

impl<T> PartialEq for ScriptTime<T>

source§

fn eq(&self, other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T> PartialOrd for ScriptTime<T>

source§

fn partial_cmp(&self, other: &Self) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<T: Copy> Copy for ScriptTime<T>

source§

impl<T> Eq for ScriptTime<T>

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for ScriptTime<T>where T: RefUnwindSafe,

§

impl<T> Send for ScriptTime<T>where T: Send,

§

impl<T> Sync for ScriptTime<T>where T: Sync,

§

impl<T> Unpin for ScriptTime<T>where T: Unpin,

§

impl<T> UnwindSafe for ScriptTime<T>where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<Q, K> Comparable<K> for Qwhere Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
source§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more