1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// An interaction combinator language
// ----------------------------------
// This file implements a textual syntax to interact with the runtime. It includes a pure AST for
// nets, as well as functions for parsing, stringifying, and converting pure ASTs to runtime nets.
// On the runtime, a net is represented by a list of active trees, plus a root tree. The textual
// syntax reflects this representation. The grammar is specified on this repo's README.

use crate::run;
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::collections::HashSet;
use std::iter::Peekable;
use std::str::Chars;

// AST
// ---

#[derive(Clone, Hash, PartialEq, Eq, Debug)]
pub enum Tree {
  Era,
  Con { lft: Box<Tree>, rgt: Box<Tree> },
  Tup { lft: Box<Tree>, rgt: Box<Tree> },
  Dup { lab: run::Lab, lft: Box<Tree>, rgt: Box<Tree> },
  Var { nam: String },
  Ref { nam: run::Val },
  Num { val: run::Val },
  Op1 { opr: run::Lab, lft: run::Val, rgt: Box<Tree> },
  Op2 { opr: run::Lab, lft: Box<Tree>, rgt: Box<Tree> },
  Mat { sel: Box<Tree>, ret: Box<Tree> },
}

type Redex = Vec<(Tree, Tree)>;

#[derive(Clone, Hash, PartialEq, Eq, Debug)]
pub struct Net {
  pub root: Tree,
  pub rdex: Redex,
}

pub type Book = BTreeMap<String, Net>;

// Parser
// ------

fn skip(chars: &mut Peekable<Chars>) {
  while let Some(c) = chars.peek() {
    if *c == '/' {
      chars.next();
      while let Some(c) = chars.peek() {
        if *c == '\n' {
          break;
        }
        chars.next();
      }
    } else if !c.is_ascii_whitespace() {
      break;
    } else {
      chars.next();
    }
  }
}

pub fn consume(chars: &mut Peekable<Chars>, text: &str) -> Result<(), String> {
  skip(chars);
  for c in text.chars() {
    if chars.next() != Some(c) {
      return Err(format!("Expected '{}', found {:?}", text, chars.peek()));
    }
  }
  return Ok(());
}

pub fn parse_decimal(chars: &mut Peekable<Chars>) -> Result<u64, String> {
  let mut num: u64 = 0;
  skip(chars);
  if !chars.peek().map_or(false, |c| c.is_digit(10)) {
    return Err(format!("Expected a decimal number, found {:?}", chars.peek()));
  }
  while let Some(c) = chars.peek() {
    if !c.is_digit(10) {
      break;
    }
    num = num * 10 + c.to_digit(10).unwrap() as u64;
    chars.next();
  }
  Ok(num)
}

pub fn parse_name(chars: &mut Peekable<Chars>) -> Result<String, String> {
  let mut txt = String::new();
  skip(chars);
  if !chars.peek().map_or(false, |c| c.is_alphanumeric() || *c == '_' || *c == '.') {
    return Err(format!("Expected a name character, found {:?}", chars.peek()))
  }
  while let Some(c) = chars.peek() {
    if !c.is_alphanumeric() && *c != '_' && *c != '.' {
      break;
    }
    txt.push(*c);
    chars.next();
  }
  Ok(txt)
}

pub fn parse_opx_lit(chars: &mut Peekable<Chars>) -> Result<String, String> {
  let mut opx = String::new();
  skip(chars);
  while let Some(c) = chars.peek() {
    if !"+-=*/%<>|&^!?".contains(*c) {
      break;
    }
    opx.push(*c);
    chars.next();
  }
  Ok(opx)
}

fn parse_opr(chars: &mut Peekable<Chars>) -> Result<run::Lab, String> {
  let opx = parse_opx_lit(chars)?;
  match opx.as_str() {
    "+"  => Ok(run::ADD),
    "-"  => Ok(run::SUB),
    "*"  => Ok(run::MUL),
    "/"  => Ok(run::DIV),
    "%"  => Ok(run::MOD),
    "==" => Ok(run::EQ),
    "!=" => Ok(run::NE),
    "<"  => Ok(run::LT),
    ">"  => Ok(run::GT),
    "<=" => Ok(run::LTE),
    ">=" => Ok(run::GTE),
    "&&" => Ok(run::AND),
    "||" => Ok(run::OR),
    "^"  => Ok(run::XOR),
    "!"  => Ok(run::NOT),
    "<<" => Ok(run::LSH),
    ">>" => Ok(run::RSH),
    _ => Err(format!("Unknown operator: {}", opx)),
  }
}

pub fn parse_tree(chars: &mut Peekable<Chars>) -> Result<Tree, String> {
  skip(chars);
  match chars.peek() {
    Some('*') => {
      chars.next();
      Ok(Tree::Era)
    }
    Some('(') => {
      chars.next();
      let lft = Box::new(parse_tree(chars)?);
      let rgt = Box::new(parse_tree(chars)?);
      consume(chars, ")")?;
      Ok(Tree::Con { lft, rgt })
    }
    Some('[') => {
      chars.next();
      let lab = 1;
      let lft = Box::new(parse_tree(chars)?);
      let rgt = Box::new(parse_tree(chars)?);
      consume(chars, "]")?;
      Ok(Tree::Tup { lft, rgt })
    }
    Some('{') => {
      chars.next();
      let lab = parse_decimal(chars)? as run::Lab;
      let lft = Box::new(parse_tree(chars)?);
      let rgt = Box::new(parse_tree(chars)?);
      consume(chars, "}")?;
      Ok(Tree::Dup { lab, lft, rgt })
    }
    Some('@') => {
      chars.next();
      skip(chars);
      let name = parse_name(chars)?;
      Ok(Tree::Ref { nam: name_to_val(&name) })
    }
    Some('#') => {
      chars.next();
      Ok(Tree::Num { val: parse_decimal(chars)? })
    }
    Some('<') => {
      chars.next();
      if chars.peek().map_or(false, |c| c.is_digit(10)) {
        let lft = parse_decimal(chars)?;
        let opr = parse_opr(chars)?;
        let rgt = Box::new(parse_tree(chars)?);
        consume(chars, ">")?;
        Ok(Tree::Op1 { opr, lft, rgt })
      } else {
        let opr = parse_opr(chars)?;
        let lft = Box::new(parse_tree(chars)?);
        let rgt = Box::new(parse_tree(chars)?);
        consume(chars, ">")?;
        Ok(Tree::Op2 { opr, lft, rgt })
      }
    }
    Some('?') => {
      chars.next();
      consume(chars, "<")?;
      let sel = Box::new(parse_tree(chars)?);
      let ret = Box::new(parse_tree(chars)?);
      consume(chars, ">")?;
      Ok(Tree::Mat { sel, ret })
    }
    _ => {
      Ok(Tree::Var { nam: parse_name(chars)? })
    },
  }
}

pub fn parse_net(chars: &mut Peekable<Chars>) -> Result<Net, String> {
  let mut rdex = Vec::new();
  let root = parse_tree(chars)?;
  while let Some(c) = { skip(chars); chars.peek() } {
    if *c == '&' {
      chars.next();
      let tree1 = parse_tree(chars)?;
      consume(chars, "~")?;
      let tree2 = parse_tree(chars)?;
      rdex.push((tree1, tree2));
    } else {
      break;
    }
  }
  Ok(Net { root, rdex })
}

pub fn parse_book(chars: &mut Peekable<Chars>) -> Result<Book, String> {
  let mut book = BTreeMap::new();
  while let Some(c) = { skip(chars); chars.peek() } {
    if *c == '@' {
      chars.next();
      let name = parse_name(chars)?;
      consume(chars, "=")?;
      let net = parse_net(chars)?;
      book.insert(name, net);
    } else {
      break;
    }
  }
  Ok(book)
}

fn do_parse<T>(code: &str, parse_fn: impl Fn(&mut Peekable<Chars>) -> Result<T, String>) -> T {
  let chars = &mut code.chars().peekable();
  match parse_fn(chars) {
    Ok(result) => {
      if chars.next().is_none() {
        result
      } else {
        eprintln!("Unable to parse the whole input. Is this not an hvmc file?");
        std::process::exit(1);
      }
    }
    Err(err) => {
      eprintln!("{}", err);
      std::process::exit(1);
    }
  }
}

pub fn do_parse_tree(code: &str) -> Tree {
  do_parse(code, parse_tree)
}

pub fn do_parse_net(code: &str) -> Net {
  do_parse(code, parse_net)
}

pub fn do_parse_book(code: &str) -> Book {
  do_parse(code, parse_book)
}

// Stringifier
// -----------

pub fn show_opr(opr: run::Lab) -> String {
  match opr {
    run::ADD => "+".to_string(),
    run::SUB => "-".to_string(),
    run::MUL => "*".to_string(),
    run::DIV => "/".to_string(),
    run::MOD => "%".to_string(),
    run::EQ  => "==".to_string(),
    run::NE  => "!=".to_string(),
    run::LT  => "<".to_string(),
    run::GT  => ">".to_string(),
    run::LTE => "<=".to_string(),
    run::GTE => ">=".to_string(),
    run::AND => "&&".to_string(),
    run::OR  => "||".to_string(),
    run::XOR => "^".to_string(),
    run::NOT => "!".to_string(),
    run::LSH => "<<".to_string(),
    run::RSH => ">>".to_string(),
    _        => panic!("Unknown operator label."),
  }
}

pub fn show_tree(tree: &Tree) -> String {
  match tree {
    Tree::Era => {
      "*".to_string()
    }
    Tree::Con { lft, rgt } => {
      format!("({} {})", show_tree(&*lft), show_tree(&*rgt))
    }
    Tree::Tup { lft, rgt } => {
      format!("[{} {}]", show_tree(&*lft), show_tree(&*rgt))
    }
    Tree::Dup { lab, lft, rgt } => {
      format!("{{{} {} {}}}", lab, show_tree(&*lft), show_tree(&*rgt))
    }
    Tree::Var { nam } => {
      nam.clone()
    }
    Tree::Ref { nam } => {
      format!("@{}", val_to_name(*nam))
    }
    Tree::Num { val } => {
      format!("#{}", (*val).to_string())
    }
    Tree::Op1 { opr, lft, rgt } => {
      format!("<{}{} {}>", lft, show_opr(*opr), show_tree(rgt))
    }
    Tree::Op2 { opr, lft, rgt } => {
      format!("<{} {} {}>", show_opr(*opr), show_tree(&*lft), show_tree(&*rgt))
    }
    Tree::Mat { sel, ret } => {
      format!("?<{} {}>", show_tree(&*sel), show_tree(&*ret))
    }
  }
}

pub fn show_net(net: &Net) -> String {
  let mut result = String::new();
  result.push_str(&format!("{}", show_tree(&net.root)));
  for (a, b) in &net.rdex {
    result.push_str(&format!("\n& {} ~ {}", show_tree(a), show_tree(b)));
  }
  return result;
}

pub fn show_book(book: &Book) -> String {
  let mut result = String::new();
  for (name, net) in book {
    result.push_str(&format!("@{} = {}\n", name, show_net(net)));
  }
  return result;
}

pub fn show_runtime_tree(rt_net: &run::Net, ptr: run::Ptr) -> String {
  show_tree(&tree_from_runtime_go(rt_net, ptr, PARENT_ROOT, &mut HashMap::new(), &mut 0))
}

pub fn show_runtime_net(rt_net: &run::Net) -> String {
  show_net(&net_from_runtime(rt_net))
}

pub fn show_runtime_book(book: &run::Book) -> String {
  show_book(&book_from_runtime(book))
}

// Conversion
// ----------

pub fn num_to_str(mut num: usize) -> String {
  let mut txt = String::new();
  num += 1;
  while num > 0 {
    num -= 1;
    let c = ((num % 26) as u8 + b'a') as char;
    txt.push(c);
    num /= 26;
  }
  return txt.chars().rev().collect();
}

pub const fn tag_to_port(tag: run::Tag) -> run::Port {
  match tag {
    run::VR1 => run::P1,
    run::VR2 => run::P2,
    _        => unreachable!(),
  }
}

pub fn port_to_tag(port: run::Port) -> run::Tag {
  match port {
    run::P1 => run::VR1,
    run::P2 => run::VR2,
    _        => unreachable!(),
  }
}

pub fn name_to_letters(name: &str) -> Vec<u8> {
  let mut letters = Vec::new();
  for c in name.chars() {
    letters.push(match c {
      '0'..='9' => c as u8 - '0' as u8 + 0,
      'A'..='Z' => c as u8 - 'A' as u8 + 10,
      'a'..='z' => c as u8 - 'a' as u8 + 36,
      '_'       => 62,
      '.'       => 63,
      _         => panic!("Invalid character in name"),
    });
  }
  return letters;
}

pub fn letters_to_name(letters: Vec<u8>) -> String {
  let mut name = String::new();
  for letter in letters {
    name.push(match letter {
       0..= 9 => (letter - 0 + '0' as u8) as char,
      10..=35 => (letter - 10 + 'A' as u8) as char,
      36..=61 => (letter - 36 + 'a' as u8) as char,
      62      => '_',
      63      => '.',
      _       => panic!("Invalid letter in name"),
    });
  }
  return name;
}

pub fn val_to_letters(num: run::Val) -> Vec<u8> {
  let mut letters = Vec::new();
  let mut num = num;
  while num > 0 {
    letters.push((num % 64) as u8);
    num /= 64;
  }
  letters.reverse();
  return letters;
}

pub fn letters_to_val(letters: Vec<u8>) -> run::Val {
  let mut num = 0;
  for letter in letters {
    num = num * 64 + letter as run::Val;
  }
  return num;
}

pub fn name_to_val(name: &str) -> run::Val {
  letters_to_val(name_to_letters(name))
}

pub fn val_to_name(num: run::Val) -> String {
  letters_to_name(val_to_letters(num))
}

// Injection and Readback
// ----------------------

// To runtime

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Parent {
  Redex,
  Node { loc: run::Loc, port: run::Port },
}
const PARENT_ROOT: Parent = Parent::Node { loc: run::ROOT.loc(), port: tag_to_port(run::ROOT.tag()) };

pub fn tree_to_runtime_go(rt_net: &mut run::Net, tree: &Tree, vars: &mut HashMap<String, Parent>, parent: Parent) -> run::Ptr {
  match tree {
    Tree::Era => {
      run::ERAS
    }
    Tree::Con { lft, rgt } => {
      let loc = rt_net.alloc();
      let p1 = tree_to_runtime_go(rt_net, &*lft, vars, Parent::Node { loc, port: run::P1 });
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, &*rgt, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::LAM, 0, loc)
    }
    Tree::Tup { lft, rgt } => {
      let loc = rt_net.alloc();
      let p1 = tree_to_runtime_go(rt_net, &*lft, vars, Parent::Node { loc, port: run::P1 });
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, &*rgt, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::TUP, 1, loc)
    }
    Tree::Dup { lab, lft, rgt } => {
      let loc = rt_net.alloc();
      let p1 = tree_to_runtime_go(rt_net, &*lft, vars, Parent::Node { loc, port: run::P1 });
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, &*rgt, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::DUP, *lab, loc)
    }
    Tree::Var { nam } => {
      if let Parent::Redex = parent {
        panic!("By definition, can't have variable on active pairs.");
      };
      match vars.get(nam) {
        Some(Parent::Redex) => {
          unreachable!();
        }
        Some(Parent::Node { loc: other_loc, port: other_port }) => {
          match parent {
            Parent::Redex => { unreachable!(); }
            Parent::Node { loc, port } => rt_net.heap.set(*other_loc, *other_port, run::Ptr::new(port_to_tag(port), 0, loc)),
          }
          return run::Ptr::new(port_to_tag(*other_port), 0, *other_loc);
        }
        None => {
          vars.insert(nam.clone(), parent);
          run::NULL
        }
      }
    }
    Tree::Ref { nam } => {
      run::Ptr::big(run::REF, *nam)
    }
    Tree::Num { val } => {
      run::Ptr::big(run::NUM, *val)
    }
    Tree::Op1 { opr, lft, rgt } => {
      let loc = rt_net.alloc();
      let p1 = run::Ptr::big(run::NUM, *lft);
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, rgt, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::OP1, *opr, loc)
    }
    Tree::Op2 { opr, lft, rgt } => {
      let loc = rt_net.alloc();
      let p1 = tree_to_runtime_go(rt_net, &*lft, vars, Parent::Node { loc, port: run::P1 });
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, &*rgt, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::OP2, *opr, loc)
    }
    Tree::Mat { sel, ret } => {
      let loc = rt_net.alloc();
      let p1 = tree_to_runtime_go(rt_net, &*sel, vars, Parent::Node { loc, port: run::P1 });
      rt_net.heap.set(loc, run::P1, p1);
      let p2 = tree_to_runtime_go(rt_net, &*ret, vars, Parent::Node { loc, port: run::P2 });
      rt_net.heap.set(loc, run::P2, p2);
      run::Ptr::new(run::MAT, 0, loc)
    }
  }
}

pub fn tree_to_runtime(rt_net: &mut run::Net, tree: &Tree) -> run::Ptr {
  tree_to_runtime_go(rt_net, tree, &mut HashMap::new(), PARENT_ROOT)
}

pub fn net_to_runtime(rt_net: &mut run::Net, net: &Net) {
  let mut vars = HashMap::new();
  let root = tree_to_runtime_go(rt_net, &net.root, &mut vars, PARENT_ROOT);
  rt_net.heap.set_root(root);
  for (tree1, tree2) in &net.rdex {
    let ptr1 = tree_to_runtime_go(rt_net, tree1, &mut vars, Parent::Redex);
    let ptr2 = tree_to_runtime_go(rt_net, tree2, &mut vars, Parent::Redex);
    rt_net.rdex.push((ptr1, ptr2));
  }
}

// Holds dup labels and ref ids used by a definition
type InsideLabs = HashSet<run::Lab, nohash_hasher::BuildNoHashHasher<run::Lab>>;
type InsideRefs = HashSet<run::Val>;
#[derive(Debug)]
pub struct Inside {
  labs: InsideLabs,
  refs: InsideRefs,
}

// Collects dup labels and ref ids used by a definition
pub fn runtime_def_get_inside(def: &run::Def) -> Inside {
  let mut inside = Inside {
    labs: HashSet::with_hasher(std::hash::BuildHasherDefault::default()),
    refs: HashSet::new(),
  };
  fn register(inside: &mut Inside, ptr: run::Ptr) {
    if ptr.is_dup() {
      inside.labs.insert(ptr.lab());
    }
    if ptr.is_ref() {
      inside.refs.insert(ptr.val());
    }
  }
  for i in 0 .. def.node.len() {
    register(&mut inside, def.node[i].0);
    register(&mut inside, def.node[i].1);
  }
  for i in 0 .. def.rdex.len() {
    register(&mut inside, def.rdex[i].0);
    register(&mut inside, def.rdex[i].1);
  }
  return inside;
}

// Computes all dup labels used by a definition, direct or not.
// FIXME: memoize to avoid duplicated work
pub fn runtime_def_get_all_labs(labs: &mut InsideLabs, insides: &HashMap<run::Val, Inside>, fid: run::Val, seen: &mut HashSet<run::Val>) {
  if seen.contains(&fid) {
    return;
  } else {
    seen.insert(fid);
    for dup in &insides[&fid].labs {
      labs.insert(*dup);
    }
    for child_fid in &insides[&fid].refs {
      runtime_def_get_all_labs(labs, insides, *child_fid, seen);
    }
  }
}

// Converts a book from the pure AST representation to the runtime representation.
pub fn book_to_runtime(book: &Book) -> run::Book {
  let mut rt_book = run::Book::new();

  // Convert each network in 'book' to a runtime network and add to 'rt_book'
  for (name, net) in book {
    let fid = name_to_val(name);
    let data = run::Heap::init(1 << 16);
    let mut rt = run::Net::new(&data);
    net_to_runtime(&mut rt, net);
    rt_book.def(fid, runtime_net_to_runtime_def(&rt));
  }

  // Calculate the 'insides' of each runtime definition
  let mut insides = HashMap::new();
  for (fid, def) in &rt_book.defs {
    insides.insert(*fid, runtime_def_get_inside(&def));
  }

  // Compute labs labels used in each runtime definition
  let mut labs_by_fid = HashMap::new();
  for (fid, _) in &rt_book.defs {
    let mut labs = HashSet::with_hasher(std::hash::BuildHasherDefault::default());
    let mut seen = HashSet::new();
    runtime_def_get_all_labs(&mut labs, &insides, *fid, &mut seen);
    labs_by_fid.insert(*fid, labs);
  }

  // Set the 'labs' field for each definition
  for (fid, def) in &mut rt_book.defs {
    def.labs = labs_by_fid.get(fid).unwrap().clone();
    //println!("{} {:?}", val_to_name(*fid), def.labs);
  }

  rt_book
}

// Converts to a def.
pub fn runtime_net_to_runtime_def(net: &run::Net) -> run::Def {
  let mut node = vec![];
  let mut rdex = vec![];
  let labs = HashSet::with_hasher(std::hash::BuildHasherDefault::default());
  for i in 0 .. net.heap.data.len() {
    let p1 = net.heap.get(node.len() as run::Loc, run::P1);
    let p2 = net.heap.get(node.len() as run::Loc, run::P2);
    if p1 != run::NULL || p2 != run::NULL {
      node.push((p1, p2));
    } else {
      break;
    }
  }
  for i in 0 .. net.rdex.len() {
    let p1 = net.rdex[i].0;
    let p2 = net.rdex[i].1;
    rdex.push((p1, p2));
  }
  return run::Def { labs, rdex, node };
}

// Reads back from a def.
pub fn runtime_def_to_runtime_net<'a>(data: &'a run::Data, def: &run::Def) -> run::Net<'a> {
  let mut net = run::Net::new(&data);
  for (i, &(p1, p2)) in def.node.iter().enumerate() {
    net.heap.set(i as run::Loc, run::P1, p1);
    net.heap.set(i as run::Loc, run::P2, p2);
  }
  net.rdex = def.rdex.clone();
  net
}

pub fn tree_from_runtime_go(rt_net: &run::Net, ptr: run::Ptr, parent: Parent, vars: &mut HashMap<Parent, String>, fresh: &mut usize) -> Tree {
  match ptr.tag() {
    run::ERA => {
      Tree::Era
    }
    run::REF => {
      Tree::Ref { nam: ptr.val() }
    }
    run::NUM => {
      Tree::Num { val: ptr.val() }
    }
    run::OP1 => {
      let opr = ptr.lab();
      let lft = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P1), Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let Tree::Num { val } = lft else { unreachable!() };
      let rgt = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P2), Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Op1 { opr, lft: val, rgt: Box::new(rgt) }
    }
    run::OP2 => {
      let opr = ptr.lab();
      let lft = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P1), Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let rgt = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P2), Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Op2 { opr, lft: Box::new(lft), rgt: Box::new(rgt) }
    }
    run::MAT => {
      let sel = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P1), Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let ret = tree_from_runtime_go(rt_net, rt_net.heap.get(ptr.loc(), run::P2), Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Mat { sel: Box::new(sel), ret: Box::new(ret) }
    }
    run::VR1 | run::VR2 => {
      let key = match ptr.tag() {
        run::VR1 => Parent::Node { loc: ptr.loc(), port: run::P1 },
        run::VR2 => Parent::Node { loc: ptr.loc(), port: run::P2 },
        _        => unreachable!(),
      };
      if let Some(nam) = vars.get(&key) {
        Tree::Var { nam: nam.clone() }
      } else {
        let nam = num_to_str(*fresh);
        *fresh += 1;
        vars.insert(parent, nam.clone());
        Tree::Var { nam }
      }
    }
    run::LAM => {
      let p1  = rt_net.heap.get(ptr.loc(), run::P1);
      let p2  = rt_net.heap.get(ptr.loc(), run::P2);
      let lft = tree_from_runtime_go(rt_net, p1, Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let rgt = tree_from_runtime_go(rt_net, p2, Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Con { lft: Box::new(lft), rgt: Box::new(rgt) }
    }
    run::TUP => {
      let p1  = rt_net.heap.get(ptr.loc(), run::P1);
      let p2  = rt_net.heap.get(ptr.loc(), run::P2);
      let lft = tree_from_runtime_go(rt_net, p1, Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let rgt = tree_from_runtime_go(rt_net, p2, Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Tup { lft: Box::new(lft), rgt: Box::new(rgt) }
    }
    run::DUP => {
      let p1  = rt_net.heap.get(ptr.loc(), run::P1);
      let p2  = rt_net.heap.get(ptr.loc(), run::P2);
      let lft = tree_from_runtime_go(rt_net, p1, Parent::Node { loc: ptr.loc(), port: run::P1 }, vars, fresh);
      let rgt = tree_from_runtime_go(rt_net, p2, Parent::Node { loc: ptr.loc(), port: run::P2 }, vars, fresh);
      Tree::Dup { lab: ptr.lab(), lft: Box::new(lft), rgt: Box::new(rgt) }
    }
    _ => {
      unreachable!()
    }
  }
}

pub fn tree_from_runtime(rt_net: &run::Net, ptr: run::Ptr) -> Tree {
  let mut vars = HashMap::new();
  let mut fresh = 0;
  tree_from_runtime_go(rt_net, ptr, PARENT_ROOT, &mut vars, &mut fresh)
}

pub fn net_from_runtime(rt_net: &run::Net) -> Net {
  let mut vars = HashMap::new();
  let mut fresh = 0;
  let mut rdex = Vec::new();
  let root = tree_from_runtime_go(rt_net, rt_net.heap.get_root(), PARENT_ROOT, &mut vars, &mut fresh);
  for &(a, b) in &rt_net.rdex {
    let tree_a = tree_from_runtime_go(rt_net, a, Parent::Redex, &mut vars, &mut fresh);
    let tree_b = tree_from_runtime_go(rt_net, b, Parent::Redex, &mut vars, &mut fresh);
    rdex.push((tree_a, tree_b));
  }
  Net { root, rdex }
}

pub fn book_from_runtime(rt_book: &run::Book) -> Book {
  let mut book = BTreeMap::new();
  for (fid, def) in rt_book.defs.iter() {
    if def.node.len() > 0 {
      let name = val_to_name(*fid);
      let data = run::Heap::init(def.node.len());
      let net  = net_from_runtime(&runtime_def_to_runtime_net(&data, &def));
      book.insert(name, net);
    }
  }
  book
}