ChatMessage

Struct ChatMessage 

Source
pub struct ChatMessage {
    pub role: Role,
    pub content: String,
    pub name: Option<String>,
    pub tool_calls: Option<Vec<ToolCall>>,
    pub tool_call_id: Option<String>,
}
Expand description

Represents a single message in a chat conversation.

Fields§

§role: Role

The role of the message sender.

§content: String

The content of the message.

§name: Option<String>

The name of the message sender.

§tool_calls: Option<Vec<ToolCall>>

Any tool calls requested by the assistant.

§tool_call_id: Option<String>

The ID of the tool call this message is a response to.

Implementations§

Source§

impl ChatMessage

Source

pub fn system(content: impl Into<String>) -> Self

Creates a new system message.

Examples found in repository?
examples/direct_llm_usage.rs (line 68)
52async fn simple_call() -> helios_engine::Result<()> {
53    // Create a configuration for the LLM.
54    let llm_config = LLMConfig {
55        model_name: "gpt-3.5-turbo".to_string(),
56        base_url: "https://api.openai.com/v1".to_string(),
57        api_key: std::env::var("OPENAI_API_KEY")
58            .unwrap_or_else(|_| "your-api-key-here".to_string()),
59        temperature: 0.7,
60        max_tokens: 2048,
61    };
62
63    // Create a new LLM client.
64    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
65
66    // Prepare the messages to send to the LLM.
67    let messages = vec![
68        ChatMessage::system("You are a helpful assistant that gives concise answers."),
69        ChatMessage::user("What is the capital of France? Answer in one sentence."),
70    ];
71
72    // Make the call to the LLM.
73    println!("Sending request...");
74    match client.chat(messages, None, None, None, None).await {
75        Ok(response) => {
76            println!("✓ Response: {}", response.content);
77        }
78        Err(e) => {
79            println!("✗ Error: {}", e);
80            println!("  (Make sure to set OPENAI_API_KEY environment variable)");
81        }
82    }
83
84    Ok(())
85}
More examples
Hide additional examples
examples/streaming_chat.rs (line 36)
14async fn main() -> helios_engine::Result<()> {
15    println!("🚀 Helios Engine - Streaming Example");
16    println!("=====================================\n");
17
18    // Set up the LLM configuration.
19    let llm_config = LLMConfig {
20        model_name: "gpt-3.5-turbo".to_string(),
21        base_url: "https://api.openai.com/v1".to_string(),
22        api_key: std::env::var("OPENAI_API_KEY")
23            .unwrap_or_else(|_| "your-api-key-here".to_string()),
24        temperature: 0.7,
25        max_tokens: 2048,
26    };
27
28    // Create a new LLM client.
29    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
30
31    // --- Example 1: Simple streaming response ---
32    println!("Example 1: Simple Streaming Response");
33    println!("======================================\n");
34
35    let messages = vec![
36        ChatMessage::system("You are a helpful assistant."),
37        ChatMessage::user("Write a short poem about coding."),
38    ];
39
40    print!("Assistant: ");
41    io::stdout().flush()?;
42
43    // Stream the response from the model, printing each chunk as it arrives.
44    let response = client
45        .chat_stream(messages, None, None, None, None, |chunk| {
46            print!("{}", chunk);
47            io::stdout().flush().unwrap();
48        })
49        .await?;
50
51    println!("\n\n");
52
53    // --- Example 2: Interactive streaming chat ---
54    println!("Example 2: Interactive Streaming Chat");
55    println!("======================================\n");
56
57    let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
58
59    let questions = vec![
60        "What is Rust?",
61        "What are its main benefits?",
62        "Show me a simple example.",
63    ];
64
65    for question in questions {
66        println!("User: {}", question);
67        session.add_user_message(question);
68
69        print!("Assistant: ");
70        io::stdout().flush()?;
71
72        // Stream the response, maintaining the conversation context.
73        let response = client
74            .chat_stream(session.get_messages(), None, None, None, None, |chunk| {
75                print!("{}", chunk);
76                io::stdout().flush().unwrap();
77            })
78            .await?;
79
80        session.add_assistant_message(&response.content);
81        println!("\n");
82    }
83
84    // --- Example 3: Streaming with thinking tags ---
85    println!("\nExample 3: Streaming with Thinking Tags");
86    println!("=========================================\n");
87    println!("When using models that support thinking tags (like o1),");
88    println!("you can detect and display them during streaming.\n");
89
90    /// A helper struct to track and display thinking tags in streamed responses.
91    struct ThinkingTracker {
92        in_thinking: bool,
93        thinking_buffer: String,
94    }
95
96    impl ThinkingTracker {
97        /// Creates a new `ThinkingTracker`.
98        fn new() -> Self {
99            Self {
100                in_thinking: false,
101                thinking_buffer: String::new(),
102            }
103        }
104
105        /// Processes a chunk of a streamed response and returns the processed output.
106        fn process_chunk(&mut self, chunk: &str) -> String {
107            let mut output = String::new();
108            let mut chars = chunk.chars().peekable();
109
110            while let Some(c) = chars.next() {
111                if c == '<' {
112                    let remaining: String = chars.clone().collect();
113                    if remaining.starts_with("thinking>") {
114                        self.in_thinking = true;
115                        self.thinking_buffer.clear();
116                        output.push_str("\n💭 [Thinking");
117                        for _ in 0..9 {
118                            chars.next();
119                        }
120                        continue;
121                    } else if remaining.starts_with("/thinking>") {
122                        self.in_thinking = false;
123                        output.push_str("]\n");
124                        for _ in 0..10 {
125                            chars.next();
126                        }
127                        continue;
128                    }
129                }
130
131                if self.in_thinking {
132                    self.thinking_buffer.push(c);
133                    if self.thinking_buffer.len() % 3 == 0 {
134                        output.push('.');
135                    }
136                } else {
137                    output.push(c);
138                }
139            }
140
141            output
142        }
143    }
144
145    let messages = vec![ChatMessage::user(
146        "Solve this problem: What is 15 * 234 + 89?",
147    )];
148
149    let mut tracker = ThinkingTracker::new();
150    print!("Assistant: ");
151    io::stdout().flush()?;
152
153    // Stream the response, processing thinking tags as they arrive.
154    let _response = client
155        .chat_stream(messages, None, None, None, None, |chunk| {
156            let output = tracker.process_chunk(chunk);
157            print!("{}", output);
158            io::stdout().flush().unwrap();
159        })
160        .await?;
161
162    println!("\n\n✅ Streaming examples completed!");
163    println!("\nKey benefits of streaming:");
164    println!("  • Real-time response display");
165    println!("  • Better user experience for long responses");
166    println!("  • Ability to show thinking/reasoning process");
167    println!("  • Early cancellation possible (future feature)");
168
169    Ok(())
170}
Source

pub fn user(content: impl Into<String>) -> Self

Creates a new user message.

Examples found in repository?
examples/direct_llm_usage.rs (line 69)
52async fn simple_call() -> helios_engine::Result<()> {
53    // Create a configuration for the LLM.
54    let llm_config = LLMConfig {
55        model_name: "gpt-3.5-turbo".to_string(),
56        base_url: "https://api.openai.com/v1".to_string(),
57        api_key: std::env::var("OPENAI_API_KEY")
58            .unwrap_or_else(|_| "your-api-key-here".to_string()),
59        temperature: 0.7,
60        max_tokens: 2048,
61    };
62
63    // Create a new LLM client.
64    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
65
66    // Prepare the messages to send to the LLM.
67    let messages = vec![
68        ChatMessage::system("You are a helpful assistant that gives concise answers."),
69        ChatMessage::user("What is the capital of France? Answer in one sentence."),
70    ];
71
72    // Make the call to the LLM.
73    println!("Sending request...");
74    match client.chat(messages, None, None, None, None).await {
75        Ok(response) => {
76            println!("✓ Response: {}", response.content);
77        }
78        Err(e) => {
79            println!("✗ Error: {}", e);
80            println!("  (Make sure to set OPENAI_API_KEY environment variable)");
81        }
82    }
83
84    Ok(())
85}
More examples
Hide additional examples
examples/streaming_chat.rs (line 37)
14async fn main() -> helios_engine::Result<()> {
15    println!("🚀 Helios Engine - Streaming Example");
16    println!("=====================================\n");
17
18    // Set up the LLM configuration.
19    let llm_config = LLMConfig {
20        model_name: "gpt-3.5-turbo".to_string(),
21        base_url: "https://api.openai.com/v1".to_string(),
22        api_key: std::env::var("OPENAI_API_KEY")
23            .unwrap_or_else(|_| "your-api-key-here".to_string()),
24        temperature: 0.7,
25        max_tokens: 2048,
26    };
27
28    // Create a new LLM client.
29    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
30
31    // --- Example 1: Simple streaming response ---
32    println!("Example 1: Simple Streaming Response");
33    println!("======================================\n");
34
35    let messages = vec![
36        ChatMessage::system("You are a helpful assistant."),
37        ChatMessage::user("Write a short poem about coding."),
38    ];
39
40    print!("Assistant: ");
41    io::stdout().flush()?;
42
43    // Stream the response from the model, printing each chunk as it arrives.
44    let response = client
45        .chat_stream(messages, None, None, None, None, |chunk| {
46            print!("{}", chunk);
47            io::stdout().flush().unwrap();
48        })
49        .await?;
50
51    println!("\n\n");
52
53    // --- Example 2: Interactive streaming chat ---
54    println!("Example 2: Interactive Streaming Chat");
55    println!("======================================\n");
56
57    let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
58
59    let questions = vec![
60        "What is Rust?",
61        "What are its main benefits?",
62        "Show me a simple example.",
63    ];
64
65    for question in questions {
66        println!("User: {}", question);
67        session.add_user_message(question);
68
69        print!("Assistant: ");
70        io::stdout().flush()?;
71
72        // Stream the response, maintaining the conversation context.
73        let response = client
74            .chat_stream(session.get_messages(), None, None, None, None, |chunk| {
75                print!("{}", chunk);
76                io::stdout().flush().unwrap();
77            })
78            .await?;
79
80        session.add_assistant_message(&response.content);
81        println!("\n");
82    }
83
84    // --- Example 3: Streaming with thinking tags ---
85    println!("\nExample 3: Streaming with Thinking Tags");
86    println!("=========================================\n");
87    println!("When using models that support thinking tags (like o1),");
88    println!("you can detect and display them during streaming.\n");
89
90    /// A helper struct to track and display thinking tags in streamed responses.
91    struct ThinkingTracker {
92        in_thinking: bool,
93        thinking_buffer: String,
94    }
95
96    impl ThinkingTracker {
97        /// Creates a new `ThinkingTracker`.
98        fn new() -> Self {
99            Self {
100                in_thinking: false,
101                thinking_buffer: String::new(),
102            }
103        }
104
105        /// Processes a chunk of a streamed response and returns the processed output.
106        fn process_chunk(&mut self, chunk: &str) -> String {
107            let mut output = String::new();
108            let mut chars = chunk.chars().peekable();
109
110            while let Some(c) = chars.next() {
111                if c == '<' {
112                    let remaining: String = chars.clone().collect();
113                    if remaining.starts_with("thinking>") {
114                        self.in_thinking = true;
115                        self.thinking_buffer.clear();
116                        output.push_str("\n💭 [Thinking");
117                        for _ in 0..9 {
118                            chars.next();
119                        }
120                        continue;
121                    } else if remaining.starts_with("/thinking>") {
122                        self.in_thinking = false;
123                        output.push_str("]\n");
124                        for _ in 0..10 {
125                            chars.next();
126                        }
127                        continue;
128                    }
129                }
130
131                if self.in_thinking {
132                    self.thinking_buffer.push(c);
133                    if self.thinking_buffer.len() % 3 == 0 {
134                        output.push('.');
135                    }
136                } else {
137                    output.push(c);
138                }
139            }
140
141            output
142        }
143    }
144
145    let messages = vec![ChatMessage::user(
146        "Solve this problem: What is 15 * 234 + 89?",
147    )];
148
149    let mut tracker = ThinkingTracker::new();
150    print!("Assistant: ");
151    io::stdout().flush()?;
152
153    // Stream the response, processing thinking tags as they arrive.
154    let _response = client
155        .chat_stream(messages, None, None, None, None, |chunk| {
156            let output = tracker.process_chunk(chunk);
157            print!("{}", output);
158            io::stdout().flush().unwrap();
159        })
160        .await?;
161
162    println!("\n\n✅ Streaming examples completed!");
163    println!("\nKey benefits of streaming:");
164    println!("  • Real-time response display");
165    println!("  • Better user experience for long responses");
166    println!("  • Ability to show thinking/reasoning process");
167    println!("  • Early cancellation possible (future feature)");
168
169    Ok(())
170}
Source

pub fn assistant(content: impl Into<String>) -> Self

Creates a new assistant message.

Source

pub fn tool(content: impl Into<String>, tool_call_id: impl Into<String>) -> Self

Creates a new tool message.

Trait Implementations§

Source§

impl Clone for ChatMessage

Source§

fn clone(&self) -> ChatMessage

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ChatMessage

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for ChatMessage

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Serialize for ChatMessage

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromRef<T> for T
where T: Clone,

Source§

fn from_ref(input: &T) -> T

Converts to this type from a reference to the input type.
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> PolicyExt for T
where T: ?Sized,

Source§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
Source§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,