pub struct LLMClient { /* private fields */ }Implementations§
Source§impl LLMClient
impl LLMClient
Sourcepub async fn new(provider_type: LLMProviderType) -> Result<Self>
pub async fn new(provider_type: LLMProviderType) -> Result<Self>
Examples found in repository?
examples/direct_llm_usage.rs (line 62)
50async fn simple_call() -> helios_engine::Result<()> {
51 // Create configuration
52 let llm_config = LLMConfig {
53 model_name: "gpt-3.5-turbo".to_string(),
54 base_url: "https://api.openai.com/v1".to_string(),
55 api_key: std::env::var("OPENAI_API_KEY")
56 .unwrap_or_else(|_| "your-api-key-here".to_string()),
57 temperature: 0.7,
58 max_tokens: 2048,
59 };
60
61 // Create client
62 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
63
64 // Prepare messages
65 let messages = vec![
66 ChatMessage::system("You are a helpful assistant that gives concise answers."),
67 ChatMessage::user("What is the capital of France? Answer in one sentence."),
68 ];
69
70 // Make the call
71 println!("Sending request...");
72 match client.chat(messages, None).await {
73 Ok(response) => {
74 println!("✓ Response: {}", response.content);
75 }
76 Err(e) => {
77 println!("✗ Error: {}", e);
78 println!(" (Make sure to set OPENAI_API_KEY environment variable)");
79 }
80 }
81
82 Ok(())
83}
84
85/// Example 2: Multi-turn conversation with context
86async fn conversation_with_context() -> helios_engine::Result<()> {
87 let llm_config = LLMConfig {
88 model_name: "gpt-3.5-turbo".to_string(),
89 base_url: "https://api.openai.com/v1".to_string(),
90 api_key: std::env::var("OPENAI_API_KEY")
91 .unwrap_or_else(|_| "your-api-key-here".to_string()),
92 temperature: 0.7,
93 max_tokens: 2048,
94 };
95
96 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
97
98 // Use ChatSession to manage conversation
99 let mut session = ChatSession::new()
100 .with_system_prompt("You are a helpful math tutor. Give brief, clear explanations.");
101
102 // First turn
103 println!("Turn 1:");
104 session.add_user_message("What is 15 * 23?");
105 print!(" User: What is 15 * 23?\n ");
106
107 match client.chat(session.get_messages(), None).await {
108 Ok(response) => {
109 session.add_assistant_message(&response.content);
110 println!("Assistant: {}", response.content);
111 }
112 Err(e) => {
113 println!("Error: {}", e);
114 return Ok(());
115 }
116 }
117
118 // Second turn (with context from first turn)
119 println!("\nTurn 2:");
120 session.add_user_message("Now divide that by 5.");
121 print!(" User: Now divide that by 5.\n ");
122
123 match client.chat(session.get_messages(), None).await {
124 Ok(response) => {
125 session.add_assistant_message(&response.content);
126 println!("Assistant: {}", response.content);
127 }
128 Err(e) => {
129 println!("Error: {}", e);
130 }
131 }
132
133 println!("\n💡 Notice how the assistant remembered the result from the first calculation!");
134
135 Ok(())
136}
137
138/// Example 3: Information about using different providers
139fn different_providers_info() {
140 println!("You can use Helios with various LLM providers:\n");
141
142 println!("🔵 OpenAI:");
143 println!(" LLMConfig {{");
144 println!(" model_name: \"gpt-4\".to_string(),");
145 println!(" base_url: \"https://api.openai.com/v1\".to_string(),");
146 println!(" api_key: env::var(\"OPENAI_API_KEY\").unwrap(),");
147 println!(" temperature: 0.7,");
148 println!(" max_tokens: 2048,");
149 println!(" }}\n");
150
151 println!("🟢 Local LM Studio:");
152 println!(" LLMConfig {{");
153 println!(" model_name: \"local-model\".to_string(),");
154 println!(" base_url: \"http://localhost:1234/v1\".to_string(),");
155 println!(" api_key: \"not-needed\".to_string(),");
156 println!(" temperature: 0.7,");
157 println!(" max_tokens: 2048,");
158 println!(" }}\n");
159
160 println!("🦙 Ollama:");
161 println!(" LLMConfig {{");
162 println!(" model_name: \"llama2\".to_string(),");
163 println!(" base_url: \"http://localhost:11434/v1\".to_string(),");
164 println!(" api_key: \"not-needed\".to_string(),");
165 println!(" temperature: 0.7,");
166 println!(" max_tokens: 2048,");
167 println!(" }}\n");
168
169 println!("🔷 Azure OpenAI:");
170 println!(" LLMConfig {{");
171 println!(" model_name: \"gpt-35-turbo\".to_string(),");
172 println!(" base_url: \"https://your-resource.openai.azure.com/...\".to_string(),");
173 println!(" api_key: env::var(\"AZURE_OPENAI_KEY\").unwrap(),");
174 println!(" temperature: 0.7,");
175 println!(" max_tokens: 2048,");
176 println!(" }}\n");
177}
178
179/// Example 4: Interactive chat session
180async fn interactive_chat() -> helios_engine::Result<()> {
181 let llm_config = LLMConfig {
182 model_name: "gpt-3.5-turbo".to_string(),
183 base_url: "https://api.openai.com/v1".to_string(),
184 api_key: std::env::var("OPENAI_API_KEY")
185 .unwrap_or_else(|_| "your-api-key-here".to_string()),
186 temperature: 0.7,
187 max_tokens: 2048,
188 };
189
190 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
191 let mut session =
192 ChatSession::new().with_system_prompt("You are a friendly and helpful AI assistant.");
193
194 println!("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
195
196 loop {
197 print!("You: ");
198 io::stdout().flush()?;
199
200 let mut input = String::new();
201 io::stdin().read_line(&mut input)?;
202 let input = input.trim();
203
204 if input.is_empty() {
205 continue;
206 }
207
208 if input == "exit" || input == "quit" {
209 println!("\n👋 Goodbye!");
210 break;
211 }
212
213 // Special commands
214 if input == "clear" {
215 session.clear();
216 println!("🧹 Conversation cleared!\n");
217 continue;
218 }
219
220 if input == "history" {
221 println!("\n📜 Conversation history:");
222 for (i, msg) in session.messages.iter().enumerate() {
223 println!(" {}. {:?}: {}", i + 1, msg.role, msg.content);
224 }
225 println!();
226 continue;
227 }
228
229 session.add_user_message(input);
230
231 print!("Assistant: ");
232 io::stdout().flush()?;
233
234 match client.chat(session.get_messages(), None).await {
235 Ok(response) => {
236 session.add_assistant_message(&response.content);
237 println!("{}\n", response.content);
238 }
239 Err(e) => {
240 println!("\n❌ Error: {}", e);
241 println!(" (Make sure OPENAI_API_KEY is set correctly)\n");
242 // Remove the last user message since it failed
243 session.messages.pop();
244 }
245 }
246 }
247
248 Ok(())
249}More examples
examples/local_streaming.rs (line 29)
12async fn main() -> helios_engine::Result<()> {
13 println!("🚀 Helios Engine - Local Model Streaming Example");
14 println!("=================================================\n");
15
16 // Configure local model
17 let local_config = LocalConfig {
18 huggingface_repo: "unsloth/Qwen2.5-0.5B-Instruct-GGUF".to_string(),
19 model_file: "Qwen2.5-0.5B-Instruct-Q4_K_M.gguf".to_string(),
20 context_size: 2048,
21 temperature: 0.7,
22 max_tokens: 512,
23 };
24
25 println!("📥 Loading local model...");
26 println!(" Repository: {}", local_config.huggingface_repo);
27 println!(" Model: {}\n", local_config.model_file);
28
29 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Local(local_config)).await?;
30
31 println!("✓ Model loaded successfully!\n");
32
33 // Example 1: Simple streaming
34 println!("Example 1: Simple Streaming Response");
35 println!("======================================\n");
36
37 let messages = vec![
38 ChatMessage::system("You are a helpful coding assistant."),
39 ChatMessage::user("Write a short explanation of what Rust is."),
40 ];
41
42 print!("Assistant: ");
43 io::stdout().flush()?;
44
45 let _response = client
46 .chat_stream(messages, None, |chunk| {
47 print!("{}", chunk);
48 io::stdout().flush().unwrap();
49 })
50 .await?;
51
52 println!("\n");
53
54 // Example 2: Multiple questions with streaming
55 println!("Example 2: Interactive Streaming");
56 println!("==================================\n");
57
58 let questions = vec![
59 "What are the main benefits of Rust?",
60 "Give me a simple code example.",
61 ];
62
63 let mut session = helios_engine::ChatSession::new()
64 .with_system_prompt("You are a helpful programming assistant.");
65
66 for question in questions {
67 println!("User: {}", question);
68 session.add_user_message(question);
69
70 print!("Assistant: ");
71 io::stdout().flush()?;
72
73 let response = client
74 .chat_stream(session.get_messages(), None, |chunk| {
75 print!("{}", chunk);
76 io::stdout().flush().unwrap();
77 })
78 .await?;
79
80 session.add_assistant_message(&response.content);
81 println!("\n");
82 }
83
84 println!("✅ Local model streaming completed successfully!");
85 println!("\n💡 Features:");
86 println!(" • Token-by-token streaming for local models");
87 println!(" • Real-time response display (no more instant full responses)");
88 println!(" • Same streaming API for both local and remote models");
89 println!(" • Improved user experience with progressive output");
90
91 Ok(())
92}examples/streaming_chat.rs (line 26)
12async fn main() -> helios_engine::Result<()> {
13 println!("🚀 Helios Engine - Streaming Example");
14 println!("=====================================\n");
15
16 // Setup LLM configuration
17 let llm_config = LLMConfig {
18 model_name: "gpt-3.5-turbo".to_string(),
19 base_url: "https://api.openai.com/v1".to_string(),
20 api_key: std::env::var("OPENAI_API_KEY")
21 .unwrap_or_else(|_| "your-api-key-here".to_string()),
22 temperature: 0.7,
23 max_tokens: 2048,
24 };
25
26 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
27
28 println!("Example 1: Simple Streaming Response");
29 println!("======================================\n");
30
31 let messages = vec![
32 ChatMessage::system("You are a helpful assistant."),
33 ChatMessage::user("Write a short poem about coding."),
34 ];
35
36 print!("Assistant: ");
37 io::stdout().flush()?;
38
39 let response = client
40 .chat_stream(messages, None, |chunk| {
41 print!("{}", chunk);
42 io::stdout().flush().unwrap();
43 })
44 .await?;
45
46 println!("\n\n");
47
48 println!("Example 2: Interactive Streaming Chat");
49 println!("======================================\n");
50
51 let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
52
53 let questions = vec![
54 "What is Rust?",
55 "What are its main benefits?",
56 "Show me a simple example.",
57 ];
58
59 for question in questions {
60 println!("User: {}", question);
61 session.add_user_message(question);
62
63 print!("Assistant: ");
64 io::stdout().flush()?;
65
66 let response = client
67 .chat_stream(session.get_messages(), None, |chunk| {
68 print!("{}", chunk);
69 io::stdout().flush().unwrap();
70 })
71 .await?;
72
73 session.add_assistant_message(&response.content);
74 println!("\n");
75 }
76
77 println!("\nExample 3: Streaming with Thinking Tags");
78 println!("=========================================\n");
79 println!("When using models that support thinking tags (like o1),");
80 println!("you can detect and display them during streaming.\n");
81
82 struct ThinkingTracker {
83 in_thinking: bool,
84 thinking_buffer: String,
85 }
86
87 impl ThinkingTracker {
88 fn new() -> Self {
89 Self {
90 in_thinking: false,
91 thinking_buffer: String::new(),
92 }
93 }
94
95 fn process_chunk(&mut self, chunk: &str) -> String {
96 let mut output = String::new();
97 let mut chars = chunk.chars().peekable();
98
99 while let Some(c) = chars.next() {
100 if c == '<' {
101 let remaining: String = chars.clone().collect();
102 if remaining.starts_with("thinking>") {
103 self.in_thinking = true;
104 self.thinking_buffer.clear();
105 output.push_str("\n💭 [Thinking");
106 for _ in 0..9 {
107 chars.next();
108 }
109 continue;
110 } else if remaining.starts_with("/thinking>") {
111 self.in_thinking = false;
112 output.push_str("]\n");
113 for _ in 0..10 {
114 chars.next();
115 }
116 continue;
117 }
118 }
119
120 if self.in_thinking {
121 self.thinking_buffer.push(c);
122 if self.thinking_buffer.len() % 3 == 0 {
123 output.push('.');
124 }
125 } else {
126 output.push(c);
127 }
128 }
129
130 output
131 }
132 }
133
134 let messages = vec![ChatMessage::user(
135 "Solve this problem: What is 15 * 234 + 89?",
136 )];
137
138 let mut tracker = ThinkingTracker::new();
139 print!("Assistant: ");
140 io::stdout().flush()?;
141
142 let _response = client
143 .chat_stream(messages, None, |chunk| {
144 let output = tracker.process_chunk(chunk);
145 print!("{}", output);
146 io::stdout().flush().unwrap();
147 })
148 .await?;
149
150 println!("\n\n✅ Streaming examples completed!");
151 println!("\nKey benefits of streaming:");
152 println!(" • Real-time response display");
153 println!(" • Better user experience for long responses");
154 println!(" • Ability to show thinking/reasoning process");
155 println!(" • Early cancellation possible (future feature)");
156
157 Ok(())
158}pub fn provider_type(&self) -> &LLMProviderType
Source§impl LLMClient
impl LLMClient
Sourcepub async fn chat(
&self,
messages: Vec<ChatMessage>,
tools: Option<Vec<ToolDefinition>>,
) -> Result<ChatMessage>
pub async fn chat( &self, messages: Vec<ChatMessage>, tools: Option<Vec<ToolDefinition>>, ) -> Result<ChatMessage>
Examples found in repository?
examples/direct_llm_usage.rs (line 72)
50async fn simple_call() -> helios_engine::Result<()> {
51 // Create configuration
52 let llm_config = LLMConfig {
53 model_name: "gpt-3.5-turbo".to_string(),
54 base_url: "https://api.openai.com/v1".to_string(),
55 api_key: std::env::var("OPENAI_API_KEY")
56 .unwrap_or_else(|_| "your-api-key-here".to_string()),
57 temperature: 0.7,
58 max_tokens: 2048,
59 };
60
61 // Create client
62 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
63
64 // Prepare messages
65 let messages = vec![
66 ChatMessage::system("You are a helpful assistant that gives concise answers."),
67 ChatMessage::user("What is the capital of France? Answer in one sentence."),
68 ];
69
70 // Make the call
71 println!("Sending request...");
72 match client.chat(messages, None).await {
73 Ok(response) => {
74 println!("✓ Response: {}", response.content);
75 }
76 Err(e) => {
77 println!("✗ Error: {}", e);
78 println!(" (Make sure to set OPENAI_API_KEY environment variable)");
79 }
80 }
81
82 Ok(())
83}
84
85/// Example 2: Multi-turn conversation with context
86async fn conversation_with_context() -> helios_engine::Result<()> {
87 let llm_config = LLMConfig {
88 model_name: "gpt-3.5-turbo".to_string(),
89 base_url: "https://api.openai.com/v1".to_string(),
90 api_key: std::env::var("OPENAI_API_KEY")
91 .unwrap_or_else(|_| "your-api-key-here".to_string()),
92 temperature: 0.7,
93 max_tokens: 2048,
94 };
95
96 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
97
98 // Use ChatSession to manage conversation
99 let mut session = ChatSession::new()
100 .with_system_prompt("You are a helpful math tutor. Give brief, clear explanations.");
101
102 // First turn
103 println!("Turn 1:");
104 session.add_user_message("What is 15 * 23?");
105 print!(" User: What is 15 * 23?\n ");
106
107 match client.chat(session.get_messages(), None).await {
108 Ok(response) => {
109 session.add_assistant_message(&response.content);
110 println!("Assistant: {}", response.content);
111 }
112 Err(e) => {
113 println!("Error: {}", e);
114 return Ok(());
115 }
116 }
117
118 // Second turn (with context from first turn)
119 println!("\nTurn 2:");
120 session.add_user_message("Now divide that by 5.");
121 print!(" User: Now divide that by 5.\n ");
122
123 match client.chat(session.get_messages(), None).await {
124 Ok(response) => {
125 session.add_assistant_message(&response.content);
126 println!("Assistant: {}", response.content);
127 }
128 Err(e) => {
129 println!("Error: {}", e);
130 }
131 }
132
133 println!("\n💡 Notice how the assistant remembered the result from the first calculation!");
134
135 Ok(())
136}
137
138/// Example 3: Information about using different providers
139fn different_providers_info() {
140 println!("You can use Helios with various LLM providers:\n");
141
142 println!("🔵 OpenAI:");
143 println!(" LLMConfig {{");
144 println!(" model_name: \"gpt-4\".to_string(),");
145 println!(" base_url: \"https://api.openai.com/v1\".to_string(),");
146 println!(" api_key: env::var(\"OPENAI_API_KEY\").unwrap(),");
147 println!(" temperature: 0.7,");
148 println!(" max_tokens: 2048,");
149 println!(" }}\n");
150
151 println!("🟢 Local LM Studio:");
152 println!(" LLMConfig {{");
153 println!(" model_name: \"local-model\".to_string(),");
154 println!(" base_url: \"http://localhost:1234/v1\".to_string(),");
155 println!(" api_key: \"not-needed\".to_string(),");
156 println!(" temperature: 0.7,");
157 println!(" max_tokens: 2048,");
158 println!(" }}\n");
159
160 println!("🦙 Ollama:");
161 println!(" LLMConfig {{");
162 println!(" model_name: \"llama2\".to_string(),");
163 println!(" base_url: \"http://localhost:11434/v1\".to_string(),");
164 println!(" api_key: \"not-needed\".to_string(),");
165 println!(" temperature: 0.7,");
166 println!(" max_tokens: 2048,");
167 println!(" }}\n");
168
169 println!("🔷 Azure OpenAI:");
170 println!(" LLMConfig {{");
171 println!(" model_name: \"gpt-35-turbo\".to_string(),");
172 println!(" base_url: \"https://your-resource.openai.azure.com/...\".to_string(),");
173 println!(" api_key: env::var(\"AZURE_OPENAI_KEY\").unwrap(),");
174 println!(" temperature: 0.7,");
175 println!(" max_tokens: 2048,");
176 println!(" }}\n");
177}
178
179/// Example 4: Interactive chat session
180async fn interactive_chat() -> helios_engine::Result<()> {
181 let llm_config = LLMConfig {
182 model_name: "gpt-3.5-turbo".to_string(),
183 base_url: "https://api.openai.com/v1".to_string(),
184 api_key: std::env::var("OPENAI_API_KEY")
185 .unwrap_or_else(|_| "your-api-key-here".to_string()),
186 temperature: 0.7,
187 max_tokens: 2048,
188 };
189
190 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
191 let mut session =
192 ChatSession::new().with_system_prompt("You are a friendly and helpful AI assistant.");
193
194 println!("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
195
196 loop {
197 print!("You: ");
198 io::stdout().flush()?;
199
200 let mut input = String::new();
201 io::stdin().read_line(&mut input)?;
202 let input = input.trim();
203
204 if input.is_empty() {
205 continue;
206 }
207
208 if input == "exit" || input == "quit" {
209 println!("\n👋 Goodbye!");
210 break;
211 }
212
213 // Special commands
214 if input == "clear" {
215 session.clear();
216 println!("🧹 Conversation cleared!\n");
217 continue;
218 }
219
220 if input == "history" {
221 println!("\n📜 Conversation history:");
222 for (i, msg) in session.messages.iter().enumerate() {
223 println!(" {}. {:?}: {}", i + 1, msg.role, msg.content);
224 }
225 println!();
226 continue;
227 }
228
229 session.add_user_message(input);
230
231 print!("Assistant: ");
232 io::stdout().flush()?;
233
234 match client.chat(session.get_messages(), None).await {
235 Ok(response) => {
236 session.add_assistant_message(&response.content);
237 println!("{}\n", response.content);
238 }
239 Err(e) => {
240 println!("\n❌ Error: {}", e);
241 println!(" (Make sure OPENAI_API_KEY is set correctly)\n");
242 // Remove the last user message since it failed
243 session.messages.pop();
244 }
245 }
246 }
247
248 Ok(())
249}Sourcepub async fn chat_stream<F>(
&self,
messages: Vec<ChatMessage>,
tools: Option<Vec<ToolDefinition>>,
on_chunk: F,
) -> Result<ChatMessage>
pub async fn chat_stream<F>( &self, messages: Vec<ChatMessage>, tools: Option<Vec<ToolDefinition>>, on_chunk: F, ) -> Result<ChatMessage>
Examples found in repository?
examples/local_streaming.rs (lines 46-49)
12async fn main() -> helios_engine::Result<()> {
13 println!("🚀 Helios Engine - Local Model Streaming Example");
14 println!("=================================================\n");
15
16 // Configure local model
17 let local_config = LocalConfig {
18 huggingface_repo: "unsloth/Qwen2.5-0.5B-Instruct-GGUF".to_string(),
19 model_file: "Qwen2.5-0.5B-Instruct-Q4_K_M.gguf".to_string(),
20 context_size: 2048,
21 temperature: 0.7,
22 max_tokens: 512,
23 };
24
25 println!("📥 Loading local model...");
26 println!(" Repository: {}", local_config.huggingface_repo);
27 println!(" Model: {}\n", local_config.model_file);
28
29 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Local(local_config)).await?;
30
31 println!("✓ Model loaded successfully!\n");
32
33 // Example 1: Simple streaming
34 println!("Example 1: Simple Streaming Response");
35 println!("======================================\n");
36
37 let messages = vec![
38 ChatMessage::system("You are a helpful coding assistant."),
39 ChatMessage::user("Write a short explanation of what Rust is."),
40 ];
41
42 print!("Assistant: ");
43 io::stdout().flush()?;
44
45 let _response = client
46 .chat_stream(messages, None, |chunk| {
47 print!("{}", chunk);
48 io::stdout().flush().unwrap();
49 })
50 .await?;
51
52 println!("\n");
53
54 // Example 2: Multiple questions with streaming
55 println!("Example 2: Interactive Streaming");
56 println!("==================================\n");
57
58 let questions = vec![
59 "What are the main benefits of Rust?",
60 "Give me a simple code example.",
61 ];
62
63 let mut session = helios_engine::ChatSession::new()
64 .with_system_prompt("You are a helpful programming assistant.");
65
66 for question in questions {
67 println!("User: {}", question);
68 session.add_user_message(question);
69
70 print!("Assistant: ");
71 io::stdout().flush()?;
72
73 let response = client
74 .chat_stream(session.get_messages(), None, |chunk| {
75 print!("{}", chunk);
76 io::stdout().flush().unwrap();
77 })
78 .await?;
79
80 session.add_assistant_message(&response.content);
81 println!("\n");
82 }
83
84 println!("✅ Local model streaming completed successfully!");
85 println!("\n💡 Features:");
86 println!(" • Token-by-token streaming for local models");
87 println!(" • Real-time response display (no more instant full responses)");
88 println!(" • Same streaming API for both local and remote models");
89 println!(" • Improved user experience with progressive output");
90
91 Ok(())
92}More examples
examples/streaming_chat.rs (lines 40-43)
12async fn main() -> helios_engine::Result<()> {
13 println!("🚀 Helios Engine - Streaming Example");
14 println!("=====================================\n");
15
16 // Setup LLM configuration
17 let llm_config = LLMConfig {
18 model_name: "gpt-3.5-turbo".to_string(),
19 base_url: "https://api.openai.com/v1".to_string(),
20 api_key: std::env::var("OPENAI_API_KEY")
21 .unwrap_or_else(|_| "your-api-key-here".to_string()),
22 temperature: 0.7,
23 max_tokens: 2048,
24 };
25
26 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
27
28 println!("Example 1: Simple Streaming Response");
29 println!("======================================\n");
30
31 let messages = vec![
32 ChatMessage::system("You are a helpful assistant."),
33 ChatMessage::user("Write a short poem about coding."),
34 ];
35
36 print!("Assistant: ");
37 io::stdout().flush()?;
38
39 let response = client
40 .chat_stream(messages, None, |chunk| {
41 print!("{}", chunk);
42 io::stdout().flush().unwrap();
43 })
44 .await?;
45
46 println!("\n\n");
47
48 println!("Example 2: Interactive Streaming Chat");
49 println!("======================================\n");
50
51 let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
52
53 let questions = vec![
54 "What is Rust?",
55 "What are its main benefits?",
56 "Show me a simple example.",
57 ];
58
59 for question in questions {
60 println!("User: {}", question);
61 session.add_user_message(question);
62
63 print!("Assistant: ");
64 io::stdout().flush()?;
65
66 let response = client
67 .chat_stream(session.get_messages(), None, |chunk| {
68 print!("{}", chunk);
69 io::stdout().flush().unwrap();
70 })
71 .await?;
72
73 session.add_assistant_message(&response.content);
74 println!("\n");
75 }
76
77 println!("\nExample 3: Streaming with Thinking Tags");
78 println!("=========================================\n");
79 println!("When using models that support thinking tags (like o1),");
80 println!("you can detect and display them during streaming.\n");
81
82 struct ThinkingTracker {
83 in_thinking: bool,
84 thinking_buffer: String,
85 }
86
87 impl ThinkingTracker {
88 fn new() -> Self {
89 Self {
90 in_thinking: false,
91 thinking_buffer: String::new(),
92 }
93 }
94
95 fn process_chunk(&mut self, chunk: &str) -> String {
96 let mut output = String::new();
97 let mut chars = chunk.chars().peekable();
98
99 while let Some(c) = chars.next() {
100 if c == '<' {
101 let remaining: String = chars.clone().collect();
102 if remaining.starts_with("thinking>") {
103 self.in_thinking = true;
104 self.thinking_buffer.clear();
105 output.push_str("\n💭 [Thinking");
106 for _ in 0..9 {
107 chars.next();
108 }
109 continue;
110 } else if remaining.starts_with("/thinking>") {
111 self.in_thinking = false;
112 output.push_str("]\n");
113 for _ in 0..10 {
114 chars.next();
115 }
116 continue;
117 }
118 }
119
120 if self.in_thinking {
121 self.thinking_buffer.push(c);
122 if self.thinking_buffer.len() % 3 == 0 {
123 output.push('.');
124 }
125 } else {
126 output.push(c);
127 }
128 }
129
130 output
131 }
132 }
133
134 let messages = vec![ChatMessage::user(
135 "Solve this problem: What is 15 * 234 + 89?",
136 )];
137
138 let mut tracker = ThinkingTracker::new();
139 print!("Assistant: ");
140 io::stdout().flush()?;
141
142 let _response = client
143 .chat_stream(messages, None, |chunk| {
144 let output = tracker.process_chunk(chunk);
145 print!("{}", output);
146 io::stdout().flush().unwrap();
147 })
148 .await?;
149
150 println!("\n\n✅ Streaming examples completed!");
151 println!("\nKey benefits of streaming:");
152 println!(" • Real-time response display");
153 println!(" • Better user experience for long responses");
154 println!(" • Ability to show thinking/reasoning process");
155 println!(" • Early cancellation possible (future feature)");
156
157 Ok(())
158}Trait Implementations§
Auto Trait Implementations§
impl Freeze for LLMClient
impl !RefUnwindSafe for LLMClient
impl Send for LLMClient
impl Sync for LLMClient
impl Unpin for LLMClient
impl !UnwindSafe for LLMClient
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more