ChatMessage

Struct ChatMessage 

Source
pub struct ChatMessage {
    pub role: Role,
    pub content: String,
    pub name: Option<String>,
    pub tool_calls: Option<Vec<ToolCall>>,
    pub tool_call_id: Option<String>,
}

Fields§

§role: Role§content: String§name: Option<String>§tool_calls: Option<Vec<ToolCall>>§tool_call_id: Option<String>

Implementations§

Source§

impl ChatMessage

Source

pub fn system(content: impl Into<String>) -> Self

Examples found in repository?
examples/direct_llm_usage.rs (line 66)
50async fn simple_call() -> helios_engine::Result<()> {
51    // Create configuration
52    let llm_config = LLMConfig {
53        model_name: "gpt-3.5-turbo".to_string(),
54        base_url: "https://api.openai.com/v1".to_string(),
55        api_key: std::env::var("OPENAI_API_KEY")
56            .unwrap_or_else(|_| "your-api-key-here".to_string()),
57        temperature: 0.7,
58        max_tokens: 2048,
59    };
60
61    // Create client
62    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
63
64    // Prepare messages
65    let messages = vec![
66        ChatMessage::system("You are a helpful assistant that gives concise answers."),
67        ChatMessage::user("What is the capital of France? Answer in one sentence."),
68    ];
69
70    // Make the call
71    println!("Sending request...");
72    match client.chat(messages, None).await {
73        Ok(response) => {
74            println!("✓ Response: {}", response.content);
75        }
76        Err(e) => {
77            println!("✗ Error: {}", e);
78            println!("  (Make sure to set OPENAI_API_KEY environment variable)");
79        }
80    }
81
82    Ok(())
83}
More examples
Hide additional examples
examples/local_streaming.rs (line 38)
12async fn main() -> helios_engine::Result<()> {
13    println!("🚀 Helios Engine - Local Model Streaming Example");
14    println!("=================================================\n");
15
16    // Configure local model
17    let local_config = LocalConfig {
18        huggingface_repo: "unsloth/Qwen2.5-0.5B-Instruct-GGUF".to_string(),
19        model_file: "Qwen2.5-0.5B-Instruct-Q4_K_M.gguf".to_string(),
20        context_size: 2048,
21        temperature: 0.7,
22        max_tokens: 512,
23    };
24
25    println!("📥 Loading local model...");
26    println!("   Repository: {}", local_config.huggingface_repo);
27    println!("   Model: {}\n", local_config.model_file);
28
29    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Local(local_config)).await?;
30
31    println!("✓ Model loaded successfully!\n");
32
33    // Example 1: Simple streaming
34    println!("Example 1: Simple Streaming Response");
35    println!("======================================\n");
36
37    let messages = vec![
38        ChatMessage::system("You are a helpful coding assistant."),
39        ChatMessage::user("Write a short explanation of what Rust is."),
40    ];
41
42    print!("Assistant: ");
43    io::stdout().flush()?;
44
45    let _response = client
46        .chat_stream(messages, None, |chunk| {
47            print!("{}", chunk);
48            io::stdout().flush().unwrap();
49        })
50        .await?;
51
52    println!("\n");
53
54    // Example 2: Multiple questions with streaming
55    println!("Example 2: Interactive Streaming");
56    println!("==================================\n");
57
58    let questions = vec![
59        "What are the main benefits of Rust?",
60        "Give me a simple code example.",
61    ];
62
63    let mut session = helios_engine::ChatSession::new()
64        .with_system_prompt("You are a helpful programming assistant.");
65
66    for question in questions {
67        println!("User: {}", question);
68        session.add_user_message(question);
69
70        print!("Assistant: ");
71        io::stdout().flush()?;
72
73        let response = client
74            .chat_stream(session.get_messages(), None, |chunk| {
75                print!("{}", chunk);
76                io::stdout().flush().unwrap();
77            })
78            .await?;
79
80        session.add_assistant_message(&response.content);
81        println!("\n");
82    }
83
84    println!("✅ Local model streaming completed successfully!");
85    println!("\n💡 Features:");
86    println!("  • Token-by-token streaming for local models");
87    println!("  • Real-time response display (no more instant full responses)");
88    println!("  • Same streaming API for both local and remote models");
89    println!("  • Improved user experience with progressive output");
90
91    Ok(())
92}
examples/streaming_chat.rs (line 30)
10async fn main() -> helios_engine::Result<()> {
11    println!("🚀 Helios Engine - Streaming Example");
12    println!("=====================================\n");
13
14    // Setup LLM configuration
15    let llm_config = LLMConfig {
16        model_name: "gpt-3.5-turbo".to_string(),
17        base_url: "https://api.openai.com/v1".to_string(),
18        api_key: std::env::var("OPENAI_API_KEY")
19            .unwrap_or_else(|_| "your-api-key-here".to_string()),
20        temperature: 0.7,
21        max_tokens: 2048,
22    };
23
24    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
25
26    println!("Example 1: Simple Streaming Response");
27    println!("======================================\n");
28
29    let messages = vec![
30        ChatMessage::system("You are a helpful assistant."),
31        ChatMessage::user("Write a short poem about coding."),
32    ];
33
34    print!("Assistant: ");
35    io::stdout().flush()?;
36
37    let response = client
38        .chat_stream(messages, None, |chunk| {
39            print!("{}", chunk);
40            io::stdout().flush().unwrap();
41        })
42        .await?;
43
44    println!("\n\n");
45
46    println!("Example 2: Interactive Streaming Chat");
47    println!("======================================\n");
48
49    let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
50
51    let questions = vec![
52        "What is Rust?",
53        "What are its main benefits?",
54        "Show me a simple example.",
55    ];
56
57    for question in questions {
58        println!("User: {}", question);
59        session.add_user_message(question);
60
61        print!("Assistant: ");
62        io::stdout().flush()?;
63
64        let response = client
65            .chat_stream(session.get_messages(), None, |chunk| {
66                print!("{}", chunk);
67                io::stdout().flush().unwrap();
68            })
69            .await?;
70
71        session.add_assistant_message(&response.content);
72        println!("\n");
73    }
74
75    println!("\nExample 3: Streaming with Thinking Tags");
76    println!("=========================================\n");
77    println!("When using models that support thinking tags (like o1),");
78    println!("you can detect and display them during streaming.\n");
79
80    struct ThinkingTracker {
81        in_thinking: bool,
82        thinking_buffer: String,
83    }
84
85    impl ThinkingTracker {
86        fn new() -> Self {
87            Self {
88                in_thinking: false,
89                thinking_buffer: String::new(),
90            }
91        }
92
93        fn process_chunk(&mut self, chunk: &str) -> String {
94            let mut output = String::new();
95            let mut chars = chunk.chars().peekable();
96
97            while let Some(c) = chars.next() {
98                if c == '<' {
99                    let remaining: String = chars.clone().collect();
100                    if remaining.starts_with("thinking>") {
101                        self.in_thinking = true;
102                        self.thinking_buffer.clear();
103                        output.push_str("\n💭 [Thinking");
104                        for _ in 0..9 {
105                            chars.next();
106                        }
107                        continue;
108                    } else if remaining.starts_with("/thinking>") {
109                        self.in_thinking = false;
110                        output.push_str("]\n");
111                        for _ in 0..10 {
112                            chars.next();
113                        }
114                        continue;
115                    }
116                }
117
118                if self.in_thinking {
119                    self.thinking_buffer.push(c);
120                    if self.thinking_buffer.len() % 3 == 0 {
121                        output.push('.');
122                    }
123                } else {
124                    output.push(c);
125                }
126            }
127
128            output
129        }
130    }
131
132    let messages = vec![ChatMessage::user(
133        "Solve this problem: What is 15 * 234 + 89?",
134    )];
135
136    let mut tracker = ThinkingTracker::new();
137    print!("Assistant: ");
138    io::stdout().flush()?;
139
140    let _response = client
141        .chat_stream(messages, None, |chunk| {
142            let output = tracker.process_chunk(chunk);
143            print!("{}", output);
144            io::stdout().flush().unwrap();
145        })
146        .await?;
147
148    println!("\n\n✅ Streaming examples completed!");
149    println!("\nKey benefits of streaming:");
150    println!("  • Real-time response display");
151    println!("  • Better user experience for long responses");
152    println!("  • Ability to show thinking/reasoning process");
153    println!("  • Early cancellation possible (future feature)");
154
155    Ok(())
156}
Source

pub fn user(content: impl Into<String>) -> Self

Examples found in repository?
examples/direct_llm_usage.rs (line 67)
50async fn simple_call() -> helios_engine::Result<()> {
51    // Create configuration
52    let llm_config = LLMConfig {
53        model_name: "gpt-3.5-turbo".to_string(),
54        base_url: "https://api.openai.com/v1".to_string(),
55        api_key: std::env::var("OPENAI_API_KEY")
56            .unwrap_or_else(|_| "your-api-key-here".to_string()),
57        temperature: 0.7,
58        max_tokens: 2048,
59    };
60
61    // Create client
62    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
63
64    // Prepare messages
65    let messages = vec![
66        ChatMessage::system("You are a helpful assistant that gives concise answers."),
67        ChatMessage::user("What is the capital of France? Answer in one sentence."),
68    ];
69
70    // Make the call
71    println!("Sending request...");
72    match client.chat(messages, None).await {
73        Ok(response) => {
74            println!("✓ Response: {}", response.content);
75        }
76        Err(e) => {
77            println!("✗ Error: {}", e);
78            println!("  (Make sure to set OPENAI_API_KEY environment variable)");
79        }
80    }
81
82    Ok(())
83}
More examples
Hide additional examples
examples/local_streaming.rs (line 39)
12async fn main() -> helios_engine::Result<()> {
13    println!("🚀 Helios Engine - Local Model Streaming Example");
14    println!("=================================================\n");
15
16    // Configure local model
17    let local_config = LocalConfig {
18        huggingface_repo: "unsloth/Qwen2.5-0.5B-Instruct-GGUF".to_string(),
19        model_file: "Qwen2.5-0.5B-Instruct-Q4_K_M.gguf".to_string(),
20        context_size: 2048,
21        temperature: 0.7,
22        max_tokens: 512,
23    };
24
25    println!("📥 Loading local model...");
26    println!("   Repository: {}", local_config.huggingface_repo);
27    println!("   Model: {}\n", local_config.model_file);
28
29    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Local(local_config)).await?;
30
31    println!("✓ Model loaded successfully!\n");
32
33    // Example 1: Simple streaming
34    println!("Example 1: Simple Streaming Response");
35    println!("======================================\n");
36
37    let messages = vec![
38        ChatMessage::system("You are a helpful coding assistant."),
39        ChatMessage::user("Write a short explanation of what Rust is."),
40    ];
41
42    print!("Assistant: ");
43    io::stdout().flush()?;
44
45    let _response = client
46        .chat_stream(messages, None, |chunk| {
47            print!("{}", chunk);
48            io::stdout().flush().unwrap();
49        })
50        .await?;
51
52    println!("\n");
53
54    // Example 2: Multiple questions with streaming
55    println!("Example 2: Interactive Streaming");
56    println!("==================================\n");
57
58    let questions = vec![
59        "What are the main benefits of Rust?",
60        "Give me a simple code example.",
61    ];
62
63    let mut session = helios_engine::ChatSession::new()
64        .with_system_prompt("You are a helpful programming assistant.");
65
66    for question in questions {
67        println!("User: {}", question);
68        session.add_user_message(question);
69
70        print!("Assistant: ");
71        io::stdout().flush()?;
72
73        let response = client
74            .chat_stream(session.get_messages(), None, |chunk| {
75                print!("{}", chunk);
76                io::stdout().flush().unwrap();
77            })
78            .await?;
79
80        session.add_assistant_message(&response.content);
81        println!("\n");
82    }
83
84    println!("✅ Local model streaming completed successfully!");
85    println!("\n💡 Features:");
86    println!("  • Token-by-token streaming for local models");
87    println!("  • Real-time response display (no more instant full responses)");
88    println!("  • Same streaming API for both local and remote models");
89    println!("  • Improved user experience with progressive output");
90
91    Ok(())
92}
examples/streaming_chat.rs (line 31)
10async fn main() -> helios_engine::Result<()> {
11    println!("🚀 Helios Engine - Streaming Example");
12    println!("=====================================\n");
13
14    // Setup LLM configuration
15    let llm_config = LLMConfig {
16        model_name: "gpt-3.5-turbo".to_string(),
17        base_url: "https://api.openai.com/v1".to_string(),
18        api_key: std::env::var("OPENAI_API_KEY")
19            .unwrap_or_else(|_| "your-api-key-here".to_string()),
20        temperature: 0.7,
21        max_tokens: 2048,
22    };
23
24    let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
25
26    println!("Example 1: Simple Streaming Response");
27    println!("======================================\n");
28
29    let messages = vec![
30        ChatMessage::system("You are a helpful assistant."),
31        ChatMessage::user("Write a short poem about coding."),
32    ];
33
34    print!("Assistant: ");
35    io::stdout().flush()?;
36
37    let response = client
38        .chat_stream(messages, None, |chunk| {
39            print!("{}", chunk);
40            io::stdout().flush().unwrap();
41        })
42        .await?;
43
44    println!("\n\n");
45
46    println!("Example 2: Interactive Streaming Chat");
47    println!("======================================\n");
48
49    let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
50
51    let questions = vec![
52        "What is Rust?",
53        "What are its main benefits?",
54        "Show me a simple example.",
55    ];
56
57    for question in questions {
58        println!("User: {}", question);
59        session.add_user_message(question);
60
61        print!("Assistant: ");
62        io::stdout().flush()?;
63
64        let response = client
65            .chat_stream(session.get_messages(), None, |chunk| {
66                print!("{}", chunk);
67                io::stdout().flush().unwrap();
68            })
69            .await?;
70
71        session.add_assistant_message(&response.content);
72        println!("\n");
73    }
74
75    println!("\nExample 3: Streaming with Thinking Tags");
76    println!("=========================================\n");
77    println!("When using models that support thinking tags (like o1),");
78    println!("you can detect and display them during streaming.\n");
79
80    struct ThinkingTracker {
81        in_thinking: bool,
82        thinking_buffer: String,
83    }
84
85    impl ThinkingTracker {
86        fn new() -> Self {
87            Self {
88                in_thinking: false,
89                thinking_buffer: String::new(),
90            }
91        }
92
93        fn process_chunk(&mut self, chunk: &str) -> String {
94            let mut output = String::new();
95            let mut chars = chunk.chars().peekable();
96
97            while let Some(c) = chars.next() {
98                if c == '<' {
99                    let remaining: String = chars.clone().collect();
100                    if remaining.starts_with("thinking>") {
101                        self.in_thinking = true;
102                        self.thinking_buffer.clear();
103                        output.push_str("\n💭 [Thinking");
104                        for _ in 0..9 {
105                            chars.next();
106                        }
107                        continue;
108                    } else if remaining.starts_with("/thinking>") {
109                        self.in_thinking = false;
110                        output.push_str("]\n");
111                        for _ in 0..10 {
112                            chars.next();
113                        }
114                        continue;
115                    }
116                }
117
118                if self.in_thinking {
119                    self.thinking_buffer.push(c);
120                    if self.thinking_buffer.len() % 3 == 0 {
121                        output.push('.');
122                    }
123                } else {
124                    output.push(c);
125                }
126            }
127
128            output
129        }
130    }
131
132    let messages = vec![ChatMessage::user(
133        "Solve this problem: What is 15 * 234 + 89?",
134    )];
135
136    let mut tracker = ThinkingTracker::new();
137    print!("Assistant: ");
138    io::stdout().flush()?;
139
140    let _response = client
141        .chat_stream(messages, None, |chunk| {
142            let output = tracker.process_chunk(chunk);
143            print!("{}", output);
144            io::stdout().flush().unwrap();
145        })
146        .await?;
147
148    println!("\n\n✅ Streaming examples completed!");
149    println!("\nKey benefits of streaming:");
150    println!("  • Real-time response display");
151    println!("  • Better user experience for long responses");
152    println!("  • Ability to show thinking/reasoning process");
153    println!("  • Early cancellation possible (future feature)");
154
155    Ok(())
156}
Source

pub fn assistant(content: impl Into<String>) -> Self

Source

pub fn tool(content: impl Into<String>, tool_call_id: impl Into<String>) -> Self

Trait Implementations§

Source§

impl Clone for ChatMessage

Source§

fn clone(&self) -> ChatMessage

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ChatMessage

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for ChatMessage

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Serialize for ChatMessage

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,