pub trait MatrixMath: NDArray + Debug {
    // Provided methods
    fn diagonal(self) -> Result<ArrayOp<MatDiag<Self>>, Error>
       where Self: Sized { ... }
    fn matmul<O>(
        self,
        other: O
    ) -> Result<ArrayOp<MatMul<Self::DType, Self, O>>, Error>
       where O: NDArray<DType = Self::DType> + Debug,
             Self: Sized { ... }
}
Expand description

Matrix operations

Provided Methods§

source

fn diagonal(self) -> Result<ArrayOp<MatDiag<Self>>, Error>where Self: Sized,

Construct an operation to read the diagonal of this matrix or batch of matrices.

source

fn matmul<O>( self, other: O ) -> Result<ArrayOp<MatMul<Self::DType, Self, O>>, Error>where O: NDArray<DType = Self::DType> + Debug, Self: Sized,

Construct an operation to multiply this matrix or batch of matrices with the other.

Examples found in repository?
examples/benchmarks.rs (line 64)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
fn matmul(context: &Context) -> Result<(), Error> {
    for m in 1..16usize {
        let dim = 2usize.pow(m as u32);

        let l = ArrayBase::<Vec<_>>::with_context(
            context.clone(),
            vec![16 * m, dim],
            vec![1.0f32; 16 * m * dim],
        )?;

        let r = ArrayBase::<Vec<_>>::with_context(
            context.clone(),
            vec![dim, m * 32],
            vec![1.0f32; dim * m * 32],
        )?;

        let num_ops = 16 * 32 * dim;
        println!("matmul {:?} with {:?} ({} ops)", l, r, num_ops);

        let x = l.matmul(r)?;
        let queue = Queue::new(context.clone(), x.size())?;

        for _ in 0..ITERATIONS {
            let start = Instant::now();
            let _output = x.read(&queue)?;
            let duration = start.elapsed();
            let rate = num_ops as f32 / duration.as_secs_f32();
            println!("{:?} us @ {} M/s", duration.as_micros(), rate / 1_000_000.);
        }
    }

    Ok(())
}
More examples
Hide additional examples
examples/backprop.rs (line 34)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
fn main() -> Result<(), Error> {
    let context = Context::default()?;
    let weights = RandomNormal::with_context(context.clone(), 2)?;
    let weights = ArrayOp::new(vec![2, 1], weights) - 0.5;
    let mut weights = ArrayBase::<Arc<RwLock<Buffer<f32>>>>::copy(&weights)?;

    let inputs = RandomUniform::with_context(context, vec![NUM_EXAMPLES, 2])?;
    let inputs = ArrayOp::new(vec![NUM_EXAMPLES, 2], inputs) * 2.;
    let inputs = ArrayBase::<Arc<Buffer<f32>>>::copy(&inputs)?;

    let inputs_bool = inputs.clone().lt_scalar(1.0)?;

    let inputs_left = inputs_bool
        .clone()
        .slice(vec![(0..NUM_EXAMPLES).into(), 0.into()])?;

    let inputs_right = inputs_bool.slice(vec![(0..NUM_EXAMPLES).into(), 1.into()])?;

    let labels = inputs_left
        .and(inputs_right)?
        .expand_dims(vec![1])?
        .cast()?;

    let labels = ArrayBase::<Buffer<f32>>::copy(&labels)?;

    let output = inputs.matmul(weights.clone())?;
    let error = labels.sub(output)?;
    let loss = error.clone().pow_scalar(2.)?;

    let d_loss = error * 2.;
    let weights_t = weights.clone().transpose(None)?;
    let gradient = d_loss.matmul(weights_t)?;
    let deltas = gradient.sum(vec![0], false)?.expand_dims(vec![1])?;
    let new_weights = weights.clone().add(deltas * LEARNING_RATE)?;

    let mut i = 0;
    loop {
        let loss = ArrayBase::<Buffer<f32>>::copy(&loss)?;

        if loss.clone().lt_scalar(1.0)?.all()? {
            return Ok(());
        }

        if i % 100 == 0 {
            println!(
                "loss: {} (max {})",
                loss.clone().sum_all()?,
                loss.clone().max_all()?
            );
        }

        assert!(!loss.clone().is_inf()?.any()?, "divergence at iteration {i}");
        assert!(!loss.is_nan()?.any()?, "unstable by iteration {i}");

        weights.write(&new_weights)?;

        i += 1;
    }
}

Implementors§