pub struct Receiver<T> { /* private fields */ }
Expand description
The receiving half of Rust’s channel
(or sync_channel
) type.
This half can only be owned by one thread.
Messages sent to the channel can be retrieved using recv
.
§Examples
use std::sync::mpsc::channel;
use std::thread;
use std::time::Duration;
let (send, recv) = channel();
thread::spawn(move || {
send.send("Hello world!").unwrap();
thread::sleep(Duration::from_secs(2)); // block for two seconds
send.send("Delayed for 2 seconds").unwrap();
});
println!("{}", recv.recv().unwrap()); // Received immediately
println!("Waiting...");
println!("{}", recv.recv().unwrap()); // Received after 2 seconds
Implementations§
Source§impl<T> Receiver<T>
impl<T> Receiver<T>
1.0.0 · Sourcepub fn try_recv(&self) -> Result<T, TryRecvError>
pub fn try_recv(&self) -> Result<T, TryRecvError>
Attempts to return a pending value on this receiver without blocking.
This method will never block the caller in order to wait for data to become available. Instead, this will always return immediately with a possible option of pending data on the channel.
This is useful for a flavor of “optimistic check” before deciding to block on a receiver.
Compared with recv
, this function has two failure cases instead of one
(one for disconnection, one for an empty buffer).
§Examples
use std::sync::mpsc::{Receiver, channel};
let (_, receiver): (_, Receiver<i32>) = channel();
assert!(receiver.try_recv().is_err());
1.0.0 · Sourcepub fn recv(&self) -> Result<T, RecvError>
pub fn recv(&self) -> Result<T, RecvError>
Attempts to wait for a value on this receiver, returning an error if the corresponding channel has hung up.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent (at least one sender
still exists). Once a message is sent to the corresponding Sender
(or SyncSender
), this receiver will wake up and return that
message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
use std::sync::mpsc;
use std::thread;
let (send, recv) = mpsc::channel();
let handle = thread::spawn(move || {
send.send(1u8).unwrap();
});
handle.join().unwrap();
assert_eq!(Ok(1), recv.recv());
Buffering behavior:
use std::sync::mpsc;
use std::thread;
use std::sync::mpsc::RecvError;
let (send, recv) = mpsc::channel();
let handle = thread::spawn(move || {
send.send(1u8).unwrap();
send.send(2).unwrap();
send.send(3).unwrap();
drop(send);
});
// wait for the thread to join so we ensure the sender is dropped
handle.join().unwrap();
assert_eq!(Ok(1), recv.recv());
assert_eq!(Ok(2), recv.recv());
assert_eq!(Ok(3), recv.recv());
assert_eq!(Err(RecvError), recv.recv());
1.12.0 · Sourcepub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
Attempts to wait for a value on this receiver, returning an error if the
corresponding channel has hung up, or if it waits more than timeout
.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent (at least one sender
still exists). Once a message is sent to the corresponding Sender
(or SyncSender
), this receiver will wake up and return that
message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
Successfully receiving value before encountering timeout:
use std::thread;
use std::time::Duration;
use std::sync::mpsc;
let (send, recv) = mpsc::channel();
thread::spawn(move || {
send.send('a').unwrap();
});
assert_eq!(
recv.recv_timeout(Duration::from_millis(400)),
Ok('a')
);
Receiving an error upon reaching timeout:
use std::thread;
use std::time::Duration;
use std::sync::mpsc;
let (send, recv) = mpsc::channel();
thread::spawn(move || {
thread::sleep(Duration::from_millis(800));
send.send('a').unwrap();
});
assert_eq!(
recv.recv_timeout(Duration::from_millis(400)),
Err(mpsc::RecvTimeoutError::Timeout)
);
Sourcepub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
🔬This is a nightly-only experimental API. (deadline_api
)
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
deadline_api
)Attempts to wait for a value on this receiver, returning an error if the
corresponding channel has hung up, or if deadline
is reached.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent. Once a message is
sent to the corresponding Sender
(or SyncSender
), then this
receiver will wake up and return that message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
Successfully receiving value before reaching deadline:
#![feature(deadline_api)]
use std::thread;
use std::time::{Duration, Instant};
use std::sync::mpsc;
let (send, recv) = mpsc::channel();
thread::spawn(move || {
send.send('a').unwrap();
});
assert_eq!(
recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
Ok('a')
);
Receiving an error upon reaching deadline:
#![feature(deadline_api)]
use std::thread;
use std::time::{Duration, Instant};
use std::sync::mpsc;
let (send, recv) = mpsc::channel();
thread::spawn(move || {
thread::sleep(Duration::from_millis(800));
send.send('a').unwrap();
});
assert_eq!(
recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
Err(mpsc::RecvTimeoutError::Timeout)
);
1.0.0 · Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Returns an iterator that will block waiting for messages, but never
panic!
. It will return None
when the channel has hung up.
§Examples
use std::sync::mpsc::channel;
use std::thread;
let (send, recv) = channel();
thread::spawn(move || {
send.send(1).unwrap();
send.send(2).unwrap();
send.send(3).unwrap();
});
let mut iter = recv.iter();
assert_eq!(iter.next(), Some(1));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.next(), Some(3));
assert_eq!(iter.next(), None);
1.15.0 · Sourcepub fn try_iter(&self) -> TryIter<'_, T> ⓘ
pub fn try_iter(&self) -> TryIter<'_, T> ⓘ
Returns an iterator that will attempt to yield all pending values.
It will return None
if there are no more pending values or if the
channel has hung up. The iterator will never panic!
or block the
user by waiting for values.
§Examples
use std::sync::mpsc::channel;
use std::thread;
use std::time::Duration;
let (sender, receiver) = channel();
// nothing is in the buffer yet
assert!(receiver.try_iter().next().is_none());
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
sender.send(1).unwrap();
sender.send(2).unwrap();
sender.send(3).unwrap();
});
// nothing is in the buffer yet
assert!(receiver.try_iter().next().is_none());
// block for two seconds
thread::sleep(Duration::from_secs(2));
let mut iter = receiver.try_iter();
assert_eq!(iter.next(), Some(1));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.next(), Some(3));
assert_eq!(iter.next(), None);
Trait Implementations§
1.1.0 · Source§impl<'a, T> IntoIterator for &'a Receiver<T>
impl<'a, T> IntoIterator for &'a Receiver<T>
1.1.0 · Source§impl<T> IntoIterator for Receiver<T>
impl<T> IntoIterator for Receiver<T>
impl<T> Send for Receiver<T>where
T: Send,
impl<T> !Sync for Receiver<T>
Auto Trait Implementations§
impl<T> Freeze for Receiver<T>
impl<T> RefUnwindSafe for Receiver<T>
impl<T> Unpin for Receiver<T>
impl<T> UnwindSafe for Receiver<T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.