Trait grafix_toolbox::uses::ops::BitXor 1.0.0[−][src]
Expand description
The bitwise XOR operator ^.
Note that Rhs is Self by default, but this is not mandatory.
Examples
An implementation of BitXor that lifts ^ to a wrapper around bool.
use std::ops::BitXor; #[derive(Debug, PartialEq)] struct Scalar(bool); impl BitXor for Scalar { type Output = Self; // rhs is the "right-hand side" of the expression `a ^ b` fn bitxor(self, rhs: Self) -> Self::Output { Self(self.0 ^ rhs.0) } } assert_eq!(Scalar(true) ^ Scalar(true), Scalar(false)); assert_eq!(Scalar(true) ^ Scalar(false), Scalar(true)); assert_eq!(Scalar(false) ^ Scalar(true), Scalar(true)); assert_eq!(Scalar(false) ^ Scalar(false), Scalar(false));
An implementation of BitXor trait for a wrapper around Vec<bool>.
use std::ops::BitXor; #[derive(Debug, PartialEq)] struct BooleanVector(Vec<bool>); impl BitXor for BooleanVector { type Output = Self; fn bitxor(self, Self(rhs): Self) -> Self::Output { let Self(lhs) = self; assert_eq!(lhs.len(), rhs.len()); Self( lhs.iter() .zip(rhs.iter()) .map(|(x, y)| *x ^ *y) .collect() ) } } let bv1 = BooleanVector(vec![true, true, false, false]); let bv2 = BooleanVector(vec![true, false, true, false]); let expected = BooleanVector(vec![false, true, true, false]); assert_eq!(bv1 ^ bv2, expected);
Associated Types
Required methods
Implementations on Foreign Types
Returns the symmetric difference of self and rhs as a new HashSet<T, S>.
Examples
use std::collections::HashSet; let a: HashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: HashSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a ^ &b; let mut i = 0; let expected = [1, 2, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
Returns the left flags, but with all the right flags toggled.
type Output = JoystickHatsimpl BitXor<Transformations> for Transformations
impl BitXor<Transformations> for Transformationspub fn bitxor(self, rhs: &AHashSet<T, S>) -> AHashSet<T, S>
pub fn bitxor(self, rhs: &AHashSet<T, S>) -> AHashSet<T, S>Returns the symmetric difference of self and rhs as a new AHashSet<T, S>.
Examples
use ahash::AHashSet; let a: AHashSet<_> = vec![1, 2, 3].into_iter().collect(); let b: AHashSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a ^ &b; let mut i = 0; let expected = [1, 2, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
type Output = AHashSet<T, S>impl<Ur> BitXor<Ur> for UTerm where
Ur: Unsigned,
impl<Ur> BitXor<Ur> for UTerm where
Ur: Unsigned, 0 ^ X = X
impl<Ul, Bl, Ur> BitXor<Ur> for UInt<Ul, Bl> where
Ul: Unsigned,
Ur: Unsigned,
Bl: Bit,
UInt<Ul, Bl>: PrivateXor<Ur>,
<UInt<Ul, Bl> as PrivateXor<Ur>>::Output: Trim,
impl<Ul, Bl, Ur> BitXor<Ur> for UInt<Ul, Bl> where
Ul: Unsigned,
Ur: Unsigned,
Bl: Bit,
UInt<Ul, Bl>: PrivateXor<Ur>,
<UInt<Ul, Bl> as PrivateXor<Ur>>::Output: Trim, Xoring unsigned integers.
We use our PrivateXor operator and then Trim the output.
impl BitXor<B0> for B0
impl BitXor<B0> for B0Xor between 0 and 0 ( 0 ^ 0 = 0)
impl BitXor<B1> for B1
impl BitXor<B1> for B1Xor between 1 and 1 ( 1 ^ 1 = 0)
impl BitXor<B1> for B0
impl BitXor<B1> for B0Xor between 0 and 1 ( 0 ^ 1 = 1)
impl BitXor<B0> for B1
impl BitXor<B0> for B1Xor between 1 and 0 ( 1 ^ 0 = 1)