pub struct GoogleCloudMlV1__HyperparameterSpec {
pub algorithm: Option<String>,
pub enable_trial_early_stopping: Option<bool>,
pub goal: Option<String>,
pub hyperparameter_metric_tag: Option<String>,
pub max_failed_trials: Option<i32>,
pub max_parallel_trials: Option<i32>,
pub max_trials: Option<i32>,
pub params: Option<Vec<GoogleCloudMlV1__ParameterSpec>>,
pub resume_previous_job_id: Option<String>,
}Expand description
Represents a set of hyperparameters to optimize.
This type is not used in any activity, and only used as part of another schema.
Fields§
§algorithm: Option<String>Optional. The search algorithm specified for the hyperparameter tuning job. Uses the default AI Platform hyperparameter tuning algorithm if unspecified.
enable_trial_early_stopping: Option<bool>Optional. Indicates if the hyperparameter tuning job enables auto trial early stopping.
goal: Option<String>Required. The type of goal to use for tuning. Available types are MAXIMIZE and MINIMIZE. Defaults to MAXIMIZE.
hyperparameter_metric_tag: Option<String>Optional. The TensorFlow summary tag name to use for optimizing trials. For current versions of TensorFlow, this tag name should exactly match what is shown in TensorBoard, including all scopes. For versions of TensorFlow prior to 0.12, this should be only the tag passed to tf.Summary. By default, “training/hptuning/metric” will be used.
max_failed_trials: Option<i32>Optional. The number of failed trials that need to be seen before failing the hyperparameter tuning job. You can specify this field to override the default failing criteria for AI Platform hyperparameter tuning jobs. Defaults to zero, which means the service decides when a hyperparameter job should fail.
max_parallel_trials: Option<i32>Optional. The number of training trials to run concurrently. You can reduce the time it takes to perform hyperparameter tuning by adding trials in parallel. However, each trail only benefits from the information gained in completed trials. That means that a trial does not get access to the results of trials running at the same time, which could reduce the quality of the overall optimization. Each trial will use the same scale tier and machine types. Defaults to one.
max_trials: Option<i32>Optional. How many training trials should be attempted to optimize the specified hyperparameters. Defaults to one.
params: Option<Vec<GoogleCloudMlV1__ParameterSpec>>Required. The set of parameters to tune.
resume_previous_job_id: Option<String>Optional. The prior hyperparameter tuning job id that users hope to continue with. The job id will be used to find the corresponding vizier study guid and resume the study.
Trait Implementations§
Source§impl Clone for GoogleCloudMlV1__HyperparameterSpec
impl Clone for GoogleCloudMlV1__HyperparameterSpec
Source§fn clone(&self) -> GoogleCloudMlV1__HyperparameterSpec
fn clone(&self) -> GoogleCloudMlV1__HyperparameterSpec
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Default for GoogleCloudMlV1__HyperparameterSpec
impl Default for GoogleCloudMlV1__HyperparameterSpec
Source§fn default() -> GoogleCloudMlV1__HyperparameterSpec
fn default() -> GoogleCloudMlV1__HyperparameterSpec
Source§impl<'de> Deserialize<'de> for GoogleCloudMlV1__HyperparameterSpec
impl<'de> Deserialize<'de> for GoogleCloudMlV1__HyperparameterSpec
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
impl Part for GoogleCloudMlV1__HyperparameterSpec
Auto Trait Implementations§
impl Freeze for GoogleCloudMlV1__HyperparameterSpec
impl RefUnwindSafe for GoogleCloudMlV1__HyperparameterSpec
impl Send for GoogleCloudMlV1__HyperparameterSpec
impl Sync for GoogleCloudMlV1__HyperparameterSpec
impl Unpin for GoogleCloudMlV1__HyperparameterSpec
impl UnwindSafe for GoogleCloudMlV1__HyperparameterSpec
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more