Struct google_cloud_spanner::apiv1::spanner_client::Client
source · pub struct Client { /* private fields */ }Implementations§
source§impl Client
impl Client
sourcepub fn new(inner: SpannerClient<Channel>) -> Client
pub fn new(inner: SpannerClient<Channel>) -> Client
create new spanner client
sourcepub async fn create_session(
&mut self,
req: CreateSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Session>, Status>
pub async fn create_session(
&mut self,
req: CreateSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Session>, Status>
create_session creates a new session. A session can be used to perform transactions that read and/or modify data in a Cloud Spanner database. Sessions are meant to be reused for many consecutive transactions.
Sessions can only execute one transaction at a time. To execute multiple concurrent read-write/write-only transactions, create multiple sessions. Note that standalone reads and queries use a transaction internally, and count toward the one transaction limit.
Active sessions use additional server resources, so it is a good idea to delete idle and unneeded sessions. Aside from explicit deletes, Cloud Spanner may delete sessions for which no operations are sent for more than an hour. If a session is deleted, requests to it return NOT_FOUND.
Idle sessions can be kept alive by sending a trivial SQL query periodically, e.g., “SELECT 1”.
sourcepub async fn batch_create_sessions(
&mut self,
req: BatchCreateSessionsRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<BatchCreateSessionsResponse>, Status>
pub async fn batch_create_sessions(
&mut self,
req: BatchCreateSessionsRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<BatchCreateSessionsResponse>, Status>
batch_create_sessions creates multiple new sessions.
This API can be used to initialize a session cache on the clients. See https:///goo.gl/TgSFN2 (at https:///goo.gl/TgSFN2) for best practices on session cache management.
Examples found in repository?
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
async fn batch_create_session(
mut spanner_client: Client,
database: String,
creation_count: usize,
) -> Result<Vec<SessionHandle>, Status> {
let request = BatchCreateSessionsRequest {
database,
session_template: None,
session_count: creation_count as i32,
};
tracing::debug!("spawn session creation request : count to create = {}", creation_count);
let response = spanner_client
.batch_create_sessions(request, None, None)
.await?
.into_inner();
let now = Instant::now();
Ok(response
.session
.into_iter()
.map(|s| SessionHandle::new(s, spanner_client.clone(), now))
.collect::<Vec<SessionHandle>>())
}sourcepub async fn get_session(
&mut self,
req: GetSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Session>, Status>
pub async fn get_session(
&mut self,
req: GetSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Session>, Status>
get_session gets a session. Returns NOT_FOUND if the session does not exist. This is mainly useful for determining whether a session is still alive.
sourcepub async fn list_sessions(
&mut self,
req: ListSessionsRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ListSessionsResponse>, Status>
pub async fn list_sessions(
&mut self,
req: ListSessionsRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ListSessionsResponse>, Status>
list_sessions lists all sessions in a given database.
sourcepub async fn delete_session(
&mut self,
req: DeleteSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<()>, Status>
pub async fn delete_session(
&mut self,
req: DeleteSessionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<()>, Status>
delete_session ends a session, releasing server resources associated with it. This will asynchronously trigger cancellation of any operations that are running with this session.
Examples found in repository?
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
async fn invalidate(&mut self) {
tracing::debug!("session invalidate {}", self.session.name);
let request = DeleteSessionRequest {
name: self.session.name.to_string(),
};
match self.spanner_client.delete_session(request, None, None).await {
Ok(_s) => self.valid = false,
Err(e) => {
tracing::error!("session remove error {} error={:?}", self.session.name, e);
}
}
}
}
/// ManagedSession
pub struct ManagedSession {
session_pool: SessionPool,
session: Option<SessionHandle>,
}
impl ManagedSession {
pub(crate) fn new(session_pool: SessionPool, session: SessionHandle) -> Self {
ManagedSession {
session_pool,
session: Some(session),
}
}
}
impl Drop for ManagedSession {
fn drop(&mut self) {
let session = self.session.take().unwrap();
self.session_pool.recycle(session);
}
}
impl Deref for ManagedSession {
type Target = SessionHandle;
fn deref(&self) -> &Self::Target {
self.session.as_ref().unwrap()
}
}
impl DerefMut for ManagedSession {
fn deref_mut(&mut self) -> &mut Self::Target {
self.session.as_mut().unwrap()
}
}
pub struct Sessions {
sessions: VecDeque<SessionHandle>,
inuse: usize,
}
impl Sessions {
fn grow(&mut self, session: SessionHandle) {
self.sessions.push_back(session);
}
fn num_opened(&self) -> usize {
self.inuse + self.sessions.len()
}
fn take(&mut self) -> Option<SessionHandle> {
match self.sessions.pop_front() {
None => None,
Some(s) => {
self.inuse += 1;
Some(s)
}
}
}
fn release(&mut self, session: SessionHandle) {
self.inuse -= 1;
if session.valid {
self.sessions.push_back(session);
}
}
}
pub struct SessionPool {
inner: Arc<Mutex<Sessions>>,
waiters: Arc<Waiters>,
allocation_request_sender: broadcast::Sender<bool>,
}
impl SessionPool {
async fn new(
database: String,
conn_pool: &ConnectionManager,
min_opened: usize,
allocation_request_sender: broadcast::Sender<bool>,
) -> Result<Self, Status> {
let init_pool = Self::init_pool(database, conn_pool, min_opened).await?;
let waiters = Arc::new(Waiters::new(VecDeque::new()));
Ok(SessionPool {
inner: Arc::new(Mutex::new(Sessions {
sessions: init_pool,
inuse: 0,
})),
waiters,
allocation_request_sender,
})
}
async fn init_pool(
database: String,
conn_pool: &ConnectionManager,
min_opened: usize,
) -> Result<VecDeque<SessionHandle>, Status> {
let channel_num = conn_pool.num();
let creation_count_per_channel = min_opened / channel_num;
let mut sessions = Vec::<SessionHandle>::new();
for _ in 0..channel_num {
let next_client = conn_pool.conn();
match batch_create_session(next_client, database.clone(), creation_count_per_channel).await {
Ok(r) => {
for i in r {
sessions.push(i);
}
}
Err(e) => return Err(e),
}
}
tracing::debug!("initial session created count = {}", sessions.len());
Ok(sessions.into())
}
fn request(&self) -> oneshot::Receiver<SessionHandle> {
let (sender, receiver) = oneshot::channel();
{
self.waiters.lock().push_back(sender);
}
let _ = self.allocation_request_sender.send(true);
receiver
}
fn num_opened(&self) -> usize {
self.inner.lock().num_opened()
}
fn num_waiting(&self) -> usize {
self.waiters.lock().len()
}
fn grow(&self, mut sessions: Vec<SessionHandle>) {
while let Some(session) = sessions.pop() {
match { self.waiters.lock().pop_front() } {
Some(c) => {
let mut inner = self.inner.lock();
match c.send(session) {
Err(session) => inner.grow(session),
_ => {
// Mark as using when notify to waiter directory.
inner.inuse += 1
}
};
}
None => self.inner.lock().grow(session),
};
}
}
fn recycle(&self, session: SessionHandle) {
if session.valid {
tracing::trace!("recycled name={}", session.session.name);
match { self.waiters.lock().pop_front() } {
Some(c) => {
if let Err(session) = c.send(session) {
self.inner.lock().release(session)
}
}
None => self.inner.lock().release(session),
};
} else {
self.inner.lock().release(session);
// request session creation
let _ = self.allocation_request_sender.send(true);
}
}
}
impl Clone for SessionPool {
fn clone(&self) -> Self {
SessionPool {
inner: Arc::clone(&self.inner),
waiters: Arc::clone(&self.waiters),
allocation_request_sender: self.allocation_request_sender.clone(),
}
}
}
#[derive(Clone, Debug)]
pub struct SessionConfig {
/// max_opened is the maximum number of opened sessions allowed by the session
/// pool. If the client tries to open a session and there are already
/// max_opened sessions, it will block until one becomes available or the
/// context passed to the client method is canceled or times out.
pub max_opened: usize,
/// min_opened is the minimum number of opened sessions that the session pool
/// tries to maintain. Session pool won't continue to expire sessions if
/// number of opened connections drops below min_opened. However, if a session
/// is found to be broken, it will still be evicted from the session pool,
/// therefore it is posssible that the number of opened sessions drops below
/// min_opened.
pub min_opened: usize,
/// max_idle is the maximum number of idle sessions, pool is allowed to keep.
pub max_idle: usize,
/// idle_timeout is the wait time before discarding an idle session.
/// Sessions older than this value since they were last used will be discarded.
/// However, if the number of sessions is less than or equal to min_opened, it will not be discarded.
pub idle_timeout: std::time::Duration,
pub session_alive_trust_duration: std::time::Duration,
/// session_get_timeout is the maximum value of the waiting time that occurs when retrieving from the connection pool when there is no idle session.
pub session_get_timeout: std::time::Duration,
/// refresh_interval is the interval of cleanup and health check functions.
pub refresh_interval: std::time::Duration,
/// incStep is the number of sessions to create in one batch when at least
/// one more session is needed.
inc_step: usize,
}
impl Default for SessionConfig {
fn default() -> Self {
SessionConfig {
max_opened: 400,
min_opened: 10,
max_idle: 300,
inc_step: 25,
idle_timeout: std::time::Duration::from_secs(30 * 60),
session_alive_trust_duration: std::time::Duration::from_secs(55 * 60),
session_get_timeout: std::time::Duration::from_secs(1),
refresh_interval: std::time::Duration::from_secs(5 * 60),
}
}
}
pub struct SessionManager {
session_pool: SessionPool,
session_get_timeout: Duration,
cancel: CancellationToken,
tasks: Vec<JoinHandle<()>>,
}
#[derive(thiserror::Error, Debug)]
pub enum SessionError {
#[error("session get time out")]
SessionGetTimeout,
#[error("failed to create session")]
FailedToCreateSession,
#[error(transparent)]
GRPC(#[from] Status),
}
impl TryAs<Status> for SessionError {
fn try_as(&self) -> Option<&Status> {
match self {
SessionError::GRPC(e) => Some(e),
_ => None,
}
}
}
impl SessionManager {
pub async fn new(
database: impl Into<String>,
conn_pool: ConnectionManager,
config: SessionConfig,
) -> Result<SessionManager, Status> {
let database = database.into();
let (sender, receiver) = broadcast::channel(1);
let session_pool = SessionPool::new(database.clone(), &conn_pool, config.min_opened, sender).await?;
let cancel = CancellationToken::new();
let session_get_timeout = config.session_get_timeout;
let task_cleaner = schedule_refresh(config.clone(), session_pool.clone(), cancel.clone());
let task_listener = listen_session_creation_request(
config,
session_pool.clone(),
database,
conn_pool,
receiver,
cancel.clone(),
);
let sm = SessionManager {
session_get_timeout,
session_pool,
cancel,
tasks: vec![task_cleaner, task_listener],
};
Ok(sm)
}
pub fn num_opened(&self) -> usize {
self.session_pool.num_opened()
}
pub fn session_waiters(&self) -> usize {
self.session_pool.num_waiting()
}
pub async fn get(&self) -> Result<ManagedSession, SessionError> {
if let Some(mut s) = self.session_pool.inner.lock().take() {
s.last_used_at = Instant::now();
return Ok(ManagedSession::new(self.session_pool.clone(), s));
}
// Wait for the session creation.
match timeout(self.session_get_timeout, self.session_pool.request()).await {
Ok(Ok(mut session)) => {
session.last_used_at = Instant::now();
Ok(ManagedSession {
session_pool: self.session_pool.clone(),
session: Some(session),
})
}
_ => Err(SessionError::SessionGetTimeout),
}
}
pub(crate) async fn close(&self) {
if self.cancel.is_cancelled() {
return;
}
self.cancel.cancel();
sleep(Duration::from_secs(1)).await;
for task in &self.tasks {
task.abort();
}
let deleting_sessions = {
let mut lock = self.session_pool.inner.lock();
let mut deleting_sessions = Vec::with_capacity(lock.sessions.len());
while let Some(session) = lock.sessions.pop_front() {
deleting_sessions.push(session);
}
deleting_sessions
};
for mut session in deleting_sessions {
delete_session(&mut session).await;
}
}
}
fn listen_session_creation_request(
config: SessionConfig,
session_pool: SessionPool,
database: String,
conn_pool: ConnectionManager,
mut rx: broadcast::Receiver<bool>,
cancel: CancellationToken,
) -> JoinHandle<()> {
tokio::spawn(async move {
let mut allocation_request_size = 0;
loop {
select! {
_ = rx.recv() => {},
_ = cancel.cancelled() => break
}
let num_opened = session_pool.num_opened();
if num_opened >= config.min_opened && allocation_request_size >= session_pool.num_waiting() {
continue;
}
let mut creation_count = config.max_opened - num_opened;
if creation_count > config.inc_step {
creation_count = config.inc_step;
}
if creation_count == 0 {
continue;
}
allocation_request_size += creation_count;
let database = database.clone();
let next_client = conn_pool.conn();
match batch_create_session(next_client, database, creation_count).await {
Ok(fresh_sessions) => {
allocation_request_size -= creation_count;
session_pool.grow(fresh_sessions)
}
Err(e) => {
allocation_request_size -= creation_count;
tracing::error!("failed to create new sessions {:?}", e)
}
};
}
tracing::trace!("stop session creating listener")
})
}
fn schedule_refresh(config: SessionConfig, session_pool: SessionPool, cancel: CancellationToken) -> JoinHandle<()> {
let start = Instant::now() + config.refresh_interval;
let mut interval = tokio::time::interval_at(start.into(), config.refresh_interval);
tokio::spawn(async move {
loop {
select! {
_ = interval.tick() => {},
_ = cancel.cancelled() => break
}
let now = Instant::now();
let max_removing_count = session_pool.num_opened() as i64 - config.max_idle as i64;
if max_removing_count < 0 {
health_check(
now + Duration::from_nanos(1),
config.session_alive_trust_duration,
&session_pool,
cancel.clone(),
)
.await;
continue;
}
shrink_idle_sessions(
now,
config.idle_timeout,
&session_pool,
max_removing_count as usize,
cancel.clone(),
)
.await;
health_check(
now + Duration::from_nanos(1),
config.session_alive_trust_duration,
&session_pool,
cancel.clone(),
)
.await;
}
tracing::trace!("stop session cleaner")
})
}
async fn health_check(
now: Instant,
session_alive_trust_duration: Duration,
sessions: &SessionPool,
cancel: CancellationToken,
) {
let sleep_duration = Duration::from_millis(10);
loop {
select! {
_ = sleep(sleep_duration) => {},
_ = cancel.cancelled() => break
}
let mut s = {
// temporary take
let mut locked = sessions.inner.lock();
match locked.take() {
Some(mut s) => {
// all the session check complete.
if s.last_checked_at == now {
locked.release(s);
break;
}
if std::cmp::max(s.last_used_at, s.last_pong_at) + session_alive_trust_duration >= now {
s.last_checked_at = now;
locked.release(s);
continue;
}
s
}
None => break,
}
};
let request = ping_query_request(s.session.name.clone());
match s.spanner_client.execute_sql(request, None, None).await {
Ok(_) => {
s.last_checked_at = now;
s.last_pong_at = now;
sessions.recycle(s);
}
Err(_) => {
delete_session(&mut s).await;
s.valid = false;
sessions.recycle(s);
}
}
}
}
async fn shrink_idle_sessions(
now: Instant,
idle_timeout: Duration,
session_pool: &SessionPool,
max_shrink_count: usize,
cancel: CancellationToken,
) {
let mut removed_count = 0;
let sleep_duration = Duration::from_millis(10);
loop {
if removed_count >= max_shrink_count {
break;
}
select! {
_ = sleep(sleep_duration) => {},
_ = cancel.cancelled() => break
}
// get old session
let mut s = {
// temporary take
let mut locked = session_pool.inner.lock();
match locked.take() {
Some(mut s) => {
// all the session check complete.
if s.last_checked_at == now {
locked.release(s);
break;
}
if s.last_used_at + idle_timeout >= now {
s.last_checked_at = now;
locked.release(s);
continue;
}
s
}
None => break,
}
};
removed_count += 1;
delete_session(&mut s).await;
s.valid = false;
session_pool.recycle(s);
}
}
async fn delete_session(session: &mut SessionHandle) {
let session_name = &session.session.name;
let request = DeleteSessionRequest {
name: session_name.to_string(),
};
match session.spanner_client.delete_session(request, None, None).await {
Ok(_) => {}
Err(e) => tracing::error!("failed to delete session {}, {:?}", session_name, e),
}
}sourcepub async fn execute_sql(
&mut self,
req: ExecuteSqlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ResultSet>, Status>
pub async fn execute_sql(
&mut self,
req: ExecuteSqlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ResultSet>, Status>
execute_sql executes an SQL statement, returning all results in a single reply. This method cannot be used to return a result set larger than 10 MiB; if the query yields more data than that, the query fails with a FAILED_PRECONDITION error.
Operations inside read-write transactions might return ABORTED. If this occurs, the application should restart the transaction from the beginning. See Transaction for more details.
Larger result sets can be fetched in streaming fashion by calling ExecuteStreamingSql instead.
Examples found in repository?
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
pub async fn update_with_option(&mut self, stmt: Statement, options: QueryOptions) -> Result<i64, Status> {
let request = ExecuteSqlRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
sql: stmt.sql.to_string(),
params: Some(prost_types::Struct { fields: stmt.params }),
param_types: stmt.param_types,
resume_token: vec![],
query_mode: options.mode.into(),
partition_token: vec![],
seqno: self.sequence_number.fetch_add(1, Ordering::Relaxed),
query_options: options.optimizer_options,
request_options: Transaction::create_request_options(options.call_options.priority),
};
let session = self.as_mut_session();
let result = session
.spanner_client
.execute_sql(request, options.call_options.cancel, options.call_options.retry)
.await;
let response = session.invalidate_if_needed(result).await?;
Ok(extract_row_count(response.into_inner().stats))
}More examples
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
async fn health_check(
now: Instant,
session_alive_trust_duration: Duration,
sessions: &SessionPool,
cancel: CancellationToken,
) {
let sleep_duration = Duration::from_millis(10);
loop {
select! {
_ = sleep(sleep_duration) => {},
_ = cancel.cancelled() => break
}
let mut s = {
// temporary take
let mut locked = sessions.inner.lock();
match locked.take() {
Some(mut s) => {
// all the session check complete.
if s.last_checked_at == now {
locked.release(s);
break;
}
if std::cmp::max(s.last_used_at, s.last_pong_at) + session_alive_trust_duration >= now {
s.last_checked_at = now;
locked.release(s);
continue;
}
s
}
None => break,
}
};
let request = ping_query_request(s.session.name.clone());
match s.spanner_client.execute_sql(request, None, None).await {
Ok(_) => {
s.last_checked_at = now;
s.last_pong_at = now;
sessions.recycle(s);
}
Err(_) => {
delete_session(&mut s).await;
s.valid = false;
sessions.recycle(s);
}
}
}
}sourcepub async fn execute_streaming_sql(
&mut self,
req: ExecuteSqlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Streaming<PartialResultSet>>, Status>
pub async fn execute_streaming_sql(
&mut self,
req: ExecuteSqlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Streaming<PartialResultSet>>, Status>
execute_streaming_sql like ExecuteSql, except returns the result set as a stream. Unlike ExecuteSql, there is no limit on the size of the returned result set. However, no individual row in the result set can exceed 100 MiB, and no column value can exceed 10 MiB.
Examples found in repository?
40 41 42 43 44 45 46 47 48 49 50 51
async fn read(
&self,
session: &mut SessionHandle,
option: Option<CallOptions>,
) -> Result<Response<Streaming<PartialResultSet>>, Status> {
let option = option.unwrap_or_default();
let client = &mut session.spanner_client;
let result = client
.execute_streaming_sql(self.request.clone(), option.cancel, option.retry)
.await;
return session.invalidate_if_needed(result).await;
}sourcepub async fn execute_batch_dml(
&mut self,
req: ExecuteBatchDmlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ExecuteBatchDmlResponse>, Status>
pub async fn execute_batch_dml(
&mut self,
req: ExecuteBatchDmlRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ExecuteBatchDmlResponse>, Status>
execute_batch_dml executes a batch of SQL DML statements. This method allows many statements to be run with lower latency than submitting them sequentially with ExecuteSql.
Statements are executed in sequential order. A request can succeed even if a statement fails. The ExecuteBatchDmlResponse.status field in the response provides information about the statement that failed. Clients must inspect this field to determine whether an error occurred.
Execution stops after the first failed statement; the remaining statements are not executed.
Examples found in repository?
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
pub async fn batch_update_with_option(
&mut self,
stmt: Vec<Statement>,
options: QueryOptions,
) -> Result<Vec<i64>, Status> {
let request = ExecuteBatchDmlRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
seqno: self.sequence_number.fetch_add(1, Ordering::Relaxed),
request_options: Transaction::create_request_options(options.call_options.priority),
statements: stmt
.into_iter()
.map(|x| execute_batch_dml_request::Statement {
sql: x.sql,
params: Some(Struct { fields: x.params }),
param_types: x.param_types,
})
.collect(),
};
let session = self.as_mut_session();
let result = session
.spanner_client
.execute_batch_dml(request, options.call_options.cancel, options.call_options.retry)
.await;
let response = session.invalidate_if_needed(result).await?;
Ok(response
.into_inner()
.result_sets
.into_iter()
.map(|x| extract_row_count(x.stats))
.collect())
}sourcepub async fn read(
&mut self,
req: ReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ResultSet>, Status>
pub async fn read(
&mut self,
req: ReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<ResultSet>, Status>
read reads rows from the database using key lookups and scans, as a simple key/value style alternative to ExecuteSql. This method cannot be used to return a result set larger than 10 MiB; if the read matches more data than that, the read fails with a FAILED_PRECONDITION error.
Reads inside read-write transactions might return ABORTED. If this occurs, the application should restart the transaction from the beginning. See Transaction for more details.
Larger result sets can be yielded in streaming fashion by calling StreamingRead instead.
sourcepub async fn streaming_read(
&mut self,
req: ReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Streaming<PartialResultSet>>, Status>
pub async fn streaming_read(
&mut self,
req: ReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Streaming<PartialResultSet>>, Status>
streaming_read like read, except returns the result set as a stream. Unlike read, there is no limit on the size of the returned result set. However, no individual row in the result set can exceed 100 MiB, and no column value can exceed 10 MiB.
Examples found in repository?
68 69 70 71 72 73 74 75 76 77 78 79
async fn read(
&self,
session: &mut SessionHandle,
option: Option<CallOptions>,
) -> Result<Response<Streaming<PartialResultSet>>, Status> {
let option = option.unwrap_or_default();
let client = &mut session.spanner_client;
let result = client
.streaming_read(self.request.clone(), option.cancel, option.retry)
.await;
return session.invalidate_if_needed(result).await;
}sourcepub async fn begin_transaction(
&mut self,
req: BeginTransactionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Transaction>, Status>
pub async fn begin_transaction(
&mut self,
req: BeginTransactionRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<Transaction>, Status>
BeginTransaction begins a new transaction. This step can often be skipped: Read, ExecuteSql and Commit can begin a new transaction as a side-effect.
Examples found in repository?
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
async fn begin_internal(
mut session: ManagedSession,
mode: transaction_options::Mode,
options: CallOptions,
) -> Result<ReadWriteTransaction, BeginError> {
let request = BeginTransactionRequest {
session: session.session.name.to_string(),
options: Some(TransactionOptions { mode: Some(mode) }),
request_options: Transaction::create_request_options(options.priority),
};
let result = session
.spanner_client
.begin_transaction(request, options.cancel, options.retry)
.await;
let response = match session.invalidate_if_needed(result).await {
Ok(response) => response,
Err(err) => {
return Err(BeginError { status: err, session });
}
};
let tx = response.into_inner();
Ok(ReadWriteTransaction {
base_tx: Transaction {
session: Some(session),
sequence_number: AtomicI64::new(0),
transaction_selector: TransactionSelector {
selector: Some(transaction_selector::Selector::Id(tx.id.clone())),
},
},
tx_id: tx.id,
wb: vec![],
})
}More examples
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
pub async fn begin(
mut session: ManagedSession,
tb: TimestampBound,
options: CallOptions,
) -> Result<ReadOnlyTransaction, Status> {
let request = BeginTransactionRequest {
session: session.session.name.to_string(),
options: Some(TransactionOptions {
mode: Some(transaction_options::Mode::ReadOnly(tb.into())),
}),
request_options: Transaction::create_request_options(options.priority),
};
let result = session
.spanner_client
.begin_transaction(request, options.cancel, options.retry)
.await;
match session.invalidate_if_needed(result).await {
Ok(response) => {
let tx = response.into_inner();
let rts = tx.read_timestamp.unwrap();
let st: SystemTime = rts.try_into().unwrap();
Ok(ReadOnlyTransaction {
base_tx: Transaction {
session: Some(session),
sequence_number: AtomicI64::new(0),
transaction_selector: TransactionSelector {
selector: Some(transaction_selector::Selector::Id(tx.id)),
},
},
rts: Some(OffsetDateTime::from(st)),
})
}
Err(e) => Err(e),
}
}sourcepub async fn commit(
&mut self,
req: CommitRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<CommitResponse>, Status>
pub async fn commit(
&mut self,
req: CommitRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<CommitResponse>, Status>
Commit commits a transaction. The request includes the mutations to be applied to rows in the database.
Commit might return an ABORTED error. This can occur at any time; commonly, the cause is conflicts with concurrent transactions. However, it can also happen for a variety of other reasons. If Commit returns ABORTED, the caller should re-attempt the transaction from the beginning, re-using the same session.
On very rare occasions, Commit might return UNKNOWN. This can happen, for example, if the client job experiences a 1+ hour networking failure. At that point, Cloud Spanner has lost track of the transaction outcome and we recommend that you perform another read from the database to see the state of things as they are now.
Examples found in repository?
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
pub(crate) async fn commit(
session: &mut ManagedSession,
ms: Vec<Mutation>,
tx: commit_request::Transaction,
commit_options: CommitOptions,
) -> Result<CommitResponse, Status> {
let request = CommitRequest {
session: session.session.name.to_string(),
mutations: ms,
transaction: Some(tx),
request_options: Transaction::create_request_options(commit_options.call_options.priority),
return_commit_stats: commit_options.return_commit_stats,
};
let result = session
.spanner_client
.commit(request, commit_options.call_options.cancel, commit_options.call_options.retry)
.await;
let response = session.invalidate_if_needed(result).await;
match response {
Ok(r) => Ok(r.into_inner()),
Err(s) => Err(s),
}
}sourcepub async fn rollback(
&mut self,
req: RollbackRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<()>, Status>
pub async fn rollback(
&mut self,
req: RollbackRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<()>, Status>
Rollback rolls back a transaction, releasing any locks it holds. It is a good idea to call this for any transaction that includes one or more Read or ExecuteSql requests and ultimately decides not to commit.
Rollback returns OK if it successfully aborts the transaction, the transaction was already aborted, or the transaction is not found. Rollback never returns ABORTED.
Examples found in repository?
308 309 310 311 312 313 314 315 316 317 318 319 320 321
pub(crate) async fn rollback(
&mut self,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>,
) -> Result<(), Status> {
let request = RollbackRequest {
transaction_id: self.tx_id.clone(),
session: self.get_session_name(),
};
let session = self.as_mut_session();
let result = session.spanner_client.rollback(request, cancel, retry).await;
session.invalidate_if_needed(result).await?.into_inner();
Ok(())
}sourcepub async fn partition_query(
&mut self,
req: PartitionQueryRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<PartitionResponse>, Status>
pub async fn partition_query(
&mut self,
req: PartitionQueryRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<PartitionResponse>, Status>
PartitionQuery creates a set of partition tokens that can be used to execute a query operation in parallel. Each of the returned partition tokens can be used by ExecuteStreamingSql to specify a subset of the query result to read. The same session and read-only transaction must be used by the PartitionQueryRequest used to create the partition tokens and the ExecuteSqlRequests that use the partition tokens.
Partition tokens become invalid when the session used to create them is deleted, is idle for too long, begins a new transaction, or becomes too old. When any of these happen, it is not possible to resume the query, and the whole operation must be restarted from the beginning.
Examples found in repository?
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
pub async fn partition_query_with_option(
&mut self,
stmt: Statement,
po: Option<PartitionOptions>,
qo: QueryOptions,
) -> Result<Vec<Partition<StatementReader>>, Status> {
let request = PartitionQueryRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
sql: stmt.sql.clone(),
params: Some(prost_types::Struct {
fields: stmt.params.clone(),
}),
param_types: stmt.param_types.clone(),
partition_options: po,
};
let result = match self
.as_mut_session()
.spanner_client
.partition_query(request.clone(), qo.call_options.cancel.clone(), qo.call_options.retry.clone())
.await
{
Ok(r) => Ok(r
.into_inner()
.partitions
.into_iter()
.map(|x| Partition {
reader: StatementReader {
request: ExecuteSqlRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
sql: stmt.sql.clone(),
params: Some(prost_types::Struct {
fields: stmt.params.clone(),
}),
param_types: stmt.param_types.clone(),
resume_token: vec![],
query_mode: 0,
partition_token: x.partition_token,
seqno: 0,
query_options: qo.optimizer_options.clone(),
request_options: Transaction::create_request_options(qo.call_options.priority),
},
},
})
.collect()),
Err(e) => Err(e),
};
self.as_mut_session().invalidate_if_needed(result).await
}sourcepub async fn partition_read(
&mut self,
req: PartitionReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<PartitionResponse>, Status>
pub async fn partition_read(
&mut self,
req: PartitionReadRequest,
cancel: Option<CancellationToken>,
retry: Option<RetrySetting>
) -> Result<Response<PartitionResponse>, Status>
PartitionRead creates a set of partition tokens that can be used to execute a read operation in parallel. Each of the returned partition tokens can be used by StreamingRead to specify a subset of the read result to read. The same session and read-only transaction must be used by the PartitionReadRequest used to create the partition tokens and the ReadRequests that use the partition tokens. There are no ordering guarantees on rows returned among the returned partition tokens, or even within each individual StreamingRead call issued with a partition_token.
Partition tokens become invalid when the session used to create them is deleted, is idle for too long, begins a new transaction, or becomes too old. When any of these happen, it is not possible to resume the read, and the whole operation must be restarted from the beginning.
Examples found in repository?
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
pub async fn partition_read_with_option(
&mut self,
table: &str,
columns: &[&str],
keys: impl Into<KeySet> + Clone,
po: Option<PartitionOptions>,
ro: ReadOptions,
) -> Result<Vec<Partition<TableReader>>, Status> {
let columns: Vec<String> = columns.iter().map(|x| x.to_string()).collect();
let inner_keyset = keys.into().inner;
let request = PartitionReadRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
table: table.to_string(),
index: ro.index.clone(),
columns: columns.clone(),
key_set: Some(inner_keyset.clone()),
partition_options: po,
};
let result = match self
.as_mut_session()
.spanner_client
.partition_read(request, ro.call_options.cancel, ro.call_options.retry)
.await
{
Ok(r) => Ok(r
.into_inner()
.partitions
.into_iter()
.map(|x| Partition {
reader: TableReader {
request: ReadRequest {
session: self.get_session_name(),
transaction: Some(self.transaction_selector.clone()),
table: table.to_string(),
index: ro.index.clone(),
columns: columns.clone(),
key_set: Some(inner_keyset.clone()),
limit: ro.limit,
resume_token: vec![],
partition_token: x.partition_token,
request_options: Transaction::create_request_options(ro.call_options.priority),
},
},
})
.collect()),
Err(e) => Err(e),
};
self.as_mut_session().invalidate_if_needed(result).await
}Trait Implementations§
Auto Trait Implementations§
impl !RefUnwindSafe for Client
impl Send for Client
impl Sync for Client
impl Unpin for Client
impl !UnwindSafe for Client
Blanket Implementations§
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T in a tonic::Request